
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

IMPLEMENTATION AND INTEGRATION OF THE OBJECT

TRANSACTION SERVICE OF CORBA TO A JAVA APPLICATION

DATABASE PROGRAM

by

Yildiray Hazir

March 2000

Thesis Advisor:
Second Reader:

C. Thomas Wu
Chris Eagle

Approved for public release; distribution is unlimited.

ttä.i.'tj '^w£ .IS. ^^cl^^iU),

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate
or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Want; 2. REPORT DATE
March 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND IMPLEMENTATION AND INTEGRATION OF THE OBJECT TRANSACTION SERVICE OF
CORBA TO A JAVA APPLICATION DATABASE PROGRAM .

6. AUTHOR Hazir, Yildiray

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSEES) 10. SPONSORING/MONTTORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the authors and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. ABSTRACT

12b. DISTRIBUTION CODE

In examining the recent trend of the Client / Server computing technology, it can be seen that distributed object technology
is ready to take off. The CORBA (Common Object Request Broker) architecture is the most widely known and readily available
candidate for development. For this reason CORBA has attracted our attention.The OMG(Object Management Group), a consortium
of object venders, developed the CORBA standard in the fall of 1990 as a common interconnection bus for distributed objects.
Transaction processing is useful not only in database applications but also in building robust mission-critical applications. Utilizing
CORBA one can build reliable distributed software systems in a much easier way. CORBA is the most widely accepted standard in
this field and there are many CORBA implementations available now. Moreover, the transaction concept is the key to ensure the
reliability and availability of Client / Server applications.In this thesis transaction properties were applied to a database application
program based on Naval Post Graduate School's Course Iteration System. For this purpose an Object Transaction Service was
provided based upon the CORBA architecture. It takes advantage of object-oriented programming to help programmers implement
transactional applications in a much easier way.In late 1994, the OMG also published the specification for the object transaction
service. This specification is adopted as the blue print for this study. This thesis presents the implementation and integration of the
object transaction service based on CORBA. JDBC (Java Database Connection) was not used for transaction property, because
JDBC is currently limited in that it cannot manage transactions across multiple connections. For transaction support across databases

or object services, CORB A's Transaction Service provides the best level of abstraction.

14. SUBJECT TERMS Software, Database, Distributed Object, Corba, OTS (Object Transaction
Service),JDBC (Java Database Connectivity) and Java.

IS. NUMBER OF PAGES
125

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSD7ICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited

IMPLEMENTATION AND INTEGRATION OF THE OBJECT TRANSACTION
SERVICE OF CORBA TO A JAVA APPLICATION DATABASE PROGRAM

Author:

Yildiray Hazir
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2000

YiMiray Hazir

Approved by:
C. Thomas Wu, Thesis Advisor

Chris Eagle, Second Reade;

Dan Boger, Chairman,
Department of Computer Science

in

IV

ABSTRACT

In examining the recent trend of the Client / Server computing technology, it can

be seen that distributed object technology is ready to take off. The CORBA (Common

Object Request Broker) architecture is the most widely known and readily available

candidate for development. For this reason CORBA has attracted our attention.

The OMG(Object Management Group), a consortium of object venders,

developed the CORBA standard in the fall of 1990 as a common interconnection bus for

distributed objects.

Transaction processing is useful not only in database applications but also in

building robust mission-critical applications. Utilizing CORBA one can build reliable

distributed software systems in a much easier way.

CORBA is the most widely accepted standard in this field and there are many

CORBA implementations available now. Moreover, the transaction concept is the key to

ensure the reliability and availability of Client / Server applications.

In this thesis transaction properties were applied to a database application

program based on Naval Post Graduate School's Course Iteration System. For this

purpose an Object Transaction Service was provided based upon the CORBA

architecture. It takes advantage of object-oriented programming to help programmers

implement transactional applications in a much easier way.

In late 1994, the OMG also published the specification for the object transaction

service. This specification is adopted as the blue print for this study. This thesis presents

the implementation and integration of the object transaction service based on CORBA.

JDBC (Java Database Connection) was not used for transaction property, because

JDBC is currently limited in that it cannot manage transactions across multiple

connections. For transaction support across databases or object services, CORBA's

Transaction Service provides the best level of abstraction.

v

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. OVERVIEW 1

B. BACKGROUND 3

C. PROBLEM STATEMENT 4

D. OBJECTIVE 5

E. SCOPE AND LIMITATIONS 6

F. ORGANIZATION OF THESIS 7

II. THE CORBA ENVIRONMENT 9

A. OMG's OBJECT REFERENCE MODEL 9

1. Organization of The Reference Model 9

2. Components of The Reference Model 10

3. Structure of an Object Request Broker 11

B. APPLICATION DEVELOPMENT IN CORBA 12

1. Concept of CORBA 13

2. Interface Definition Language 15

3. ORB Client 16

4. Object Implementation 17

5. ORB and RPC 18

6. Programming Environment 18

III. SYSTEM OVERVIEW 19

A. TRANSACTION DEFINITION 19

B. TRANSACTION PROPERTIES 19

1. Atomicity Property 19

2. Consistency Property 20

3. Isolation Property 21

4. Durability Property 21

vii

C. TRANSACTIONAL CLIENT 22

D. TRANSACTIONAL SERVER 22

E. RECOVERABLE SERVER 24

F. OTS MANAGER 25

G. TRANSACTIONS MODELS 27

H. PROGRAMMING MODELS 27

1. Implicit Method 27

2. Explicit Method 28

IV. SYSTEM ARCHITECTURE 29

A. OVERVIEW 29

B. OBJECT TRANSACTION SERVICE INTERFACES 31

1. Current Interface 31

2. Coordinator Interface 32

3. Resource Interface 33

C. CLIENT AND SERVERS 33

1. Begin a Transaction 35

2. Transaction Coordinator 37

3. Transaction Participants 39

4. Processing of Two - Phase Commit Protocol 41

V. IMPLEMENTATION ISSUES 43

A. BACKGROUND REVIEW 43

B. OVERVIEW OF THE EXAMPLE 44

C. A JAVA CORBA SAMPLE 46

D. WRITING THE PROJECT "JJDL" 47

E. INTERFACE DEFINITION LANGUAGE (IDL) TO JAVA MAPPING 48

1. Modules 48

2. Interfaces 49

3. Exceptions 49

viii

4. Structures 49

5. Sequences 49

6. Strings 50

7. CORBA Parameters 50

F. WRITING THE TRANSACTION ORIGINATOR (CLIENT PROGRAM). 50

1. Initializing the ORB 51

2. CosTransactions Service Initialization 51

3. Get the Transactional Server Reference from an Object File 51

4. Narrow the Object Reference 52

5. Get the Current Object and Begin a Transaction 53

6. Invoking Methods on the Registerlmpl class

from Client Program 54

7. Committing or Rolling Back the Transaction 56

H. WRITING THE SERVER PROGRAM 57

1. Initializing the ORB, the CosTransactions and

the BOA in the Server Program 57

2. Declare the Transactional Object and

Connect it to Basic Object adaptor 58

3. Convert the Transactional Object's Reference to String and

Convert its Reference to String 58

4. Then Wait for Incoming Requests from the Clients 59

I. WRITING THE TRANSACTIONAL OBJECT (REGISTER) 60

1. Understanding the Registrationlmpl Class Hierarchy 60

2. Implementing the Registrationlmpl Object and its Methods 60

3. Implementing Methods of the Regi strationlmpl Obj ect .61

4. Implementing the Lock Object 64

IX

VI. CONCLUSIONS 67

A. CORBA OBJECT TRANSACTION SERVICE 67

B. JAVA DATABASE CONNECTIVITY TRANSACTION SUPPORT 68

APPENDIX A: IDL DEFINITION FOR COSTRANSACTION 71

APPENDIX B: IDL DEFINITION FOR PROJECT 75

APPENDIX C: SERVER IMPLEMENTATION 77

APPENDIX D: CLIENT IMPLEMENTATION 79

APPENDIX E: REGISTRATION CLASS IMPLEMENTATION 89

APPENDIX F: LOCK CLASS IMPLEMENTATION 101

APPENDIX G: APPLICATION PROGRAM GUI SCREEN SHOTS 103

APPENDIX H: CLIENT \ SERVER DOS OUTPUT SCREEN SHOTS 105

APPENDIX I: DATABASE TABLES SCREEN SHOTS 107

LIST OF REFERENCES 109

INITIAL DISTRIBUTION LIST Ill

LIST OF FIGURES

1. Figure 1.1 OMA Framework 5

2. Figure 1.2 System Sketch 6

3. Figure 2.1 The ORB Interconnection Bus 11

4. Figure 2.2 The Structure of a CORBA Object Request Broker 12

5. Figure 2.3 Common Object Request Broker Architecture 13

6. Figure 2.4 The Application Development in CORBA 14

7. Figure 2.5 The Operation Call on a Proxy 17

8. Figure 3.1 Object Transaction Service Overview 23

9. Figure 3.2 The Functional Diagram of the Applications and the OTS Manager 25

10. Figure 4.1 System Architecture of OTS 30

11. Figure 4.2.a The Register IDL Interface 34

Figure 4.2.b The Programming Environment for Clients 35

12. Figure 4.3 Beginning a Transaction 36

13. Figure 4.4 The Propagation of Transaction Context 38

14. Figure 4.5 Communication in Two-Phase Commit Protocol 40

15. Figure 5.1 The Interfaces and Transaction Manager 44

16. Figure 5.2 Project IDL 47

XI

Xll

I. INTRODUCTION

A. OVERVIEW

A thesis usually begins with a general review; instead I will ask some questions to

make the subject more understandable after giving the general definition of thesis.

This thesis was based on a real application that is used by the Naval Post

Graduate School course registration system. This implementation simulates that students

from different curricular can enter their course requests to a database table instead of

hard copy signup sheet. This system supports students concurrent attempts to update their

account with a transaction property. Students' interaction was simulated to add a course

from Course Table to Registered Course table and drop a course from the Registered

Course table corresponding to the name of the students. This thesis implements and

integrates the transaction service to this Course Registration Database application

program. The following questions were asked to identify the definition of Transaction

Service.

• What happens if a failure occurs during modification of resources?

• Which operations have been completed?

• Which operations have not (and have to be done again)?

• In which states will the resources be?

Whatever measures are taken to avoid failures, failures still occur. Power supplies

may fail, disks crash and operating systems may not supply the stability we hope for.

Assume that such a failure occurs while one component updates resources from

belonging to other components. For example during course registration , while adding or

dropping courses from the Course Registration Database. This database consists of two

tables; a Courses table that lists available Computer Science courses and a Registered

Course table that is updated when Computer Science students add and drop new courses

at the beginning of each quarter. This action performs two primitive operation

invocations: adding a new course from the Course table and dropping a course from the

Registered Course table.

If a failure occurs during the operation, a number of questions arise:

Which actions have been completed and which have not? In the case of course updating,

has the add operation been completed but the drop operation not completed? What is the

state of the resources? Are there any operations necessary to restore their integrity? In the

case of adding a course has the course that was on its way from one table to the other

table been lost and does it need to be recovered?

The approach taken in both databases and distributed systems to deal with these

problems are transactions. A transaction is a sequence operation that is either performed

completely or not at all. If it is completed, the effect of a transaction is persistent and

cannot be affected by failures.

"Transactions are more than just business events; they have become an

applications design philosophy that guarantees robustness in distributed systems."[l]

Traditionally, we use the transaction concept when we need to perform a set of atomic

operations on a database to ensure the consistency of shared data. But the transaction

concept is not only useful in the database domain. It is impossible to create a mission-

critical client / server application without the need to update some data. Transactions

have become common and desirable services to construct reliable and available client /

server applications.

"The concept of transactions has been successfully applied in many commercial

data management systems to build robust and reliable systems." [2] As network

technology grows, the environment of distributed computing is becoming more and more

mature. This motivates the introduction of transaction concepts into distributed

environments. As we can see, this concept has dominated the world of database

processing.

Taking a look at the recent trends in client / server computing technology, it is

easy to see that distributed object technology is ready to take off. What is a distributed

object?

If you have experience writing programs in an object-oriented language like C++

and Java, you will not be unfamiliar with the word "object" in an object-oriented world.

An object is a functional unit of a program, which encapsulates code and data, and can be

specialized by means of inheritance. Naturally, an object cannot reach across the

compiled-language and address spaces in a traditional programming environment. It is

clear that in order to introduce the object-oriented concept into client / server computing,

we have to break these limitations.

A distributed object is a binary component that can be accessed from clients in

remote hosts by means of method invocations through a common software bus. Clients

have no idea what language was used to create the objects or even the physical locations

of these server objects. Clients need only know the names and interfaces that server

objects export to the software bus. So we can draw the picture: every component ties to

the common software bus to publish their interfaces after which these components can

interoperate with each other, forming the basis of client/server computing. "Distributed

object technology inherits the advantage of object-oriented programming allowing large

applications to be broken into small and manageable components that coexist on the

intergalactic bus"[7]. We can say that distributed object technology promises the most

flexible client / server computing model.

B. BACKGROUND

In the transaction processing world, all products support transaction services over

heterogeneous platforms, however, none of them support the object-oriented paradigm.

There are several different approaches to distributed object technology. Two of the most

well known distributed object infrastructure standards are Microsoft's DCOM[3] and

OMG's CORBA[4].

Each of them takes a different approach toward object distribution.[3,5]

Compared to the CORB A object model, DCOM must be considered weaker since it:

• does not support inheritance of components

• is not as strongly typed

• does not support exceptions

3

"The OMG has adopted an internetworking specification between the two object

models. It will be refined into an interoperability specification and enable DCOM objects

to invoke services from CORBA objects and vice versa"[6]. The main difference is

DCOM does not support the inheritance feature of object-oriented technology and

originally aims at document processing. CORBA, on the other hand, is aimed at general

purpose distributed computing.

A standard is necessary to pave the way toward success. The OMG (Object

Management Group) specifies an architecture for an open software bus, called CORBA

(Common Object Request Broker Architecture)!!]. CORBA which is proposed by OMG

(Object Management Group) is the realization of OMA (Object Management

Architecture), also proposed by OMG for distributed object computing. It defines a set of

common services that are used to allow objects to invoke each other's methods without

regard for the platform on which they operate, or the language in which they are written.

Just as Java provides independence at the platform level CORBA provides independence

at the language and platform level, as shown in Figure 1.1.

CORBA consists of four major parts: object request broker (ORB), common

object service specification (COSS), common facility architecture (CFA) and application

objects[l]. The ORB serves as a software bus that forwards messages between client and

server objects. COSS defines a set of basic building blocks over the ORB. These building

blocks are realized as server objects. COSS defines a number of services that are useful to

any application in general. I chose to use CORBA as the distributed object infrastructure

because it is an open standard and widely support in heterogeneous environments.

Additionally the TNRL (Turkish Naval Research Lab) directed the use of CORBA for

future projects.

C. PROBLEM STATEMENT

The OMG does not provide implementations for these services but provides the

interfaces by which the services are offered. CFA specifies a few facilities that are closer

to application level and are closer to a specific application domain.

CORBA defines the interfaces and functionalities of the ORB via which client

objects may reuse COSS and CFA objects or access other server objects. CORBA

specifies an ORB(Object Request Broker) through which a client can invoke the methods

of remote objects either statically or dynamically. The OMG also defines an IDL

(Interface Definition Language) to specify the interfaces between components and the

software bus. IDL is independent of any programming language. From the client's point

of view, what they see is an IDL interface that a server object exports and they need not

know how the server object is implemented.

Application Objects

s
Common Object Services

(COSS)
Common Facilities

(CFA)

Figure 1.1 OMA Framework [From Ref. 6]

D. OBJECTIVE

As mentioned above, we believe distributed object technology is the future of

client / server computing. It will make sense if we can provide some common services on

top of the standard CORBA services to help with the development of distributed

software. Because transactions are essential for building reliable distributed applications,

an object transaction service was chosen as the first step toward distributed object

computing. The main idea is to create an ordinary object and make it transactional by

inheriting the interfaces defined by the transaction service. This enables it to participate

in atomic transactions, even in face of failures.

5

The goal of this research is to explore and implement the Object Transaction

Service (OTS) which is defined in COSS, on a Windows NT platform so that application

object programmers can reuse these services to build reliable and robust distributed

software efficiently. OTS supports not only the flat transaction model but also the nested

transaction model. Additionally it defines a set of interfaces for recoverable objects, a

kind of server object that can recover its states when suffering failures.

E. SCOPE AND LIMITATIONS

An application can take advantage of the OTS as follows (Figure 1.2). In the

typical scenario, a client first begins a transaction by issuing a request to an object in

OTS, which constructs a corresponding transaction context. The client then performs

transactional operations by issuing requests to resource objects. The resource objects in

turn register themselves with the OTS and acquire locks, in order to control concurrent

access to shared data items.

Application Objects

Transactional Client Resource Object

Object'. Request BrokerXpRB) ?

©@© OTS

Figure 1.2 System Sketch [From Ref. 6]

Eventually, the client ends the transaction by issuing another request to the OTS

which triggers the atomic commit procedure to synchronize all objects involved in this

transaction on behalf of the client. Thus, OTS guarantees the essential ACID properties

(detailed in the next chapter) with respect to the transaction.

The design of the service consists of three parts: the OTS manager and a suite of

libraries that help the resource object programmer in creating a recoverable transactional

object. Programmers who want to use transaction services should inherit the OTS

interfaces (detailed in Chapter II). Programmers who want to provide objects to be used

within transactions can use the libraries suite developed in this thesis. The current version

of this libraries does support both flat and nested transaction models on the Windows NT

platform.

F. ORGANIZATION OF THESIS

This thesis is organized as follows: Chapter II introduces the CORBA

environment. Chapter III provides an overview of the system. The IDL interfaces of the

Object Transaction Service and the system architecture is described in Chapter IV.

Chapter V discusses the issues of implementing the Object Transaction Service. Finally a

conclusion is presented in Chapter VI.

THIS PAGE INTENTIONALLY LEFT BLANK

II. THE CORBA ENVIRONMENT

Our Object Transaction Service is built upon the OMG's CORBA (Common

Object Request Broker Architecture). In order to have a common base for further

discussion, we review the essential background about OMG's CORBA and some related

works. The development environment is also addressed.

A. OMG's OBJECT REFERENCE MODEL

The Object Management Group, Inc. (OMG) is an international organization

concerned with object technologies. Its goal is to establish industry guidelines and object

management specifications to provide a common framework for application

development. Primary goals are the reusability, portability, and interoperability of object-

based software in distributed, heterogeneous environments. OMG establishes the Object

Management Architecture (OMA) to provide the conceptual infrastructure upon which all

OMG specifications are based. It is known as OMA object Reference Model.

1. Organization of The Reference Model

The Reference Model identifies and characterizes the components, interfaces and

protocols that compose OMG's Object Management Architecture, but does not itself

define them in detail. Generally speaking, the Reference Model: [1]

• Identifies the major separable components of the total Object Management

Architecture

• Characterizes the functions provided by each component

• Explains the relationships between the components and with the external

operating environment

• Identifies the protocols and interfaces for accessing the components

Specifically, the Reference Model addresses:

• How objects make and receive requests and responses

• The basic operations that must be provided for every object

• Object interfaces that provide common facilities useful in many applications

2. Components of the Reference Model

The Reference Model consists of the following components: (Figure 1-1)

• Object Request Broker, which enables objects to transparently make and

receive requests and responses in a distributed environment. In so doing, an

ORB provides interoperability between applications on different machines in

heterogeneous distributed environments and interconnects multiple object

systems. Some details of how to use an ORB to develop distributed systems

will be shown in the next section. [1]

• Object Services, a collection of services that support basic functions for using

and implementing objects. These services are independent of application

domains and act as the building blocks of distributed applications. The

operations provided by Object Services are made available through the ORB.

OTS is an example of Object Services. [6]

• Common Facilities, OMG defines a set of services that many applications may

share, but which are not as fundamental as the Object Services. They are

usually domain specific services. For instance, a printing and spooling system

or electronic mail facility could be classified as a common facility.

10

• Application Objects, corresponds to the traditional notion of an application

and are not standardized by OMG. It is important to realize that classes that

fall into the Application Objects classification are at the same OMA semantic

level as Common Facilities classes. For example, one can take advantage of

Object Services and/or Common Facilities to build his own Application

Object that can be shared through the network.

In general terms, the Application Objects and Common Facilities have an application

orientation while the Object Request Broker and Object Services are concerned more

with the system or infrastructure aspects of distributed object management. The Object

Request Broker then, is the core of the Reference Model. Nevertheless, an Object

Request Broker alone can not enable interoperability at the application semantic level. It

acts as a telephone exchange, which provides the basic mechanism for making and

receiving calls but does not ensure meaningful communication between subscribers.

Object Services, Common Facilities and Application Objects provide different levels of

semantics by using an ORB as the basis for communication.

3. Structure of an Object Request Broker

As described by OMG: "The Object Request Broker provides the mechanisms by

which objects transparently make requests and receive responses.

ORB

Figure 2.1 The ORB Interconnection Bus

11

The ORB provides interoperability between applications on different machines in

heterogeneous distributed environment and seamlessly interconnects multiple object

systems" [3]. Thus, we can view the ORB as an object interconnection bus through which

objects in different machines can communicate with each other to complete the

cooperative work. This is shown in Figure 2.1.

The ORB is responsible for finding, communicating with, and activating the

object server. The structure of a CORBA Object Request Broker is given in Figure 2.2,

and it is introduced in the succeeding subsections:

Interface
repository

Object Implementation

Client

Dynamic
invocation

Ö
o

Client
IDL stubs

ORB
interface

I
Static

skeletons

Object Request Broker core

ft

Object
adapter

Implementation
repository

Figure 2.2 The Structure of a CORBA Object Request Broker [From Ref. 2]

B. APPLICATION DEVELOPMENT IN CORBA

As shown in Figure 2.3, CORBA environment consists of the following major

components: the client object, the object server, the DDL compiler and the ORB. We

briefly describe the functionality of each of these components and then discuss the

interaction among these components during the development and the execution of the

program.

12

In CORBA, the services of an object are specified in terms of an application

program interface (API) using the standard CORBA interface definition language (DDL)

which is machine and programming language independent. An object that implements the

service (or API) according to an BDL interface specification is called an object

implementation.

Object Server

Client
Object DDL Compiler

DDL Interface
Specification

Object
Implementaion

Object Request Broker

"Runtime Communication •
I i Application Program |

Code Generation -
Gneratedby Ü
the DDL Compiler

- Library Linking
I CORBA

Components

Figure 2.3 Common Object Request Broker Architecture

1. The Concept of CORBA

In another point of view, an object implementation is an executable entity that is

capable of providing to the client, a service declared by the EDL. A client makes a request

to an object implementation and expects the reply via an ORB. Here, the ORB serves as a

software interconnection bus between the client and the object implementation. As shown

in Figure 2.3, a client is able to access the services of an object implementation only if it

has a reference to that object. This reference, called the client stub, is generated by the

IDL compiler from the DDL specification of the object server.

13

The object implementation can provide its service over the networks via an ORB

only if it has an implementation skeleton, which is also generated by the DDL compiler.

Figure 2.4 illustrates the complete development of an object implementation and a client

program.

interface account {
read-only attribute float balance;
void makeLodgement(in float f);
void makeWithdrawal(in float f);

};

IDL interface

specification
--► DDL

Compiler

Object Implementation

Server.java

Client Source Code

_CorbaStub.java ~ """~ - ^.
Client Stub —Java

•▼Compiler

CorbaHelper.java
Used By Client

Corbajava
Corba Interface

CorbaHolder.java "■ — — «. ^.Java
Holding Obiect Compiler

A
_CorbaImplementatioBase.java
Server Skeleton

^ Source Code

Code Generated by DDL Application Program

Figure 2.4 The Application Development in CORBA

Corba provides a mapping between a name and an object reference. Storing such

a mapping in the ORB is known as binding an object, and removing this entry is called

unbinding.

14

Obtaining an object reference which is bound to a name is known as resolving the

name. We now briefly describe the basic concept of how CORBA and its components

operate. To invoke an operation on a remote object implementation, a client must first

bind to that object. The ORB then checks if an instance of the remote object

implementation exists, if not, an instance of the object implementation will be created.

The client can then invoke operations on the remote object implementation by sending

requests.

The object implementation returns the results of the invocation to the client via

the ORB after it completes the invocation. Subsequent invocations can be made without

re-establishment of the communication channel.

Note that DDL is a definition language, it is not an operational programming

language such as Java. Given an IDL interface, there may exist many object

implementations for that interface. Moreover, these object implementations may be

implemented in various programming languages on different operating systems or

hardware platforms. DDL compilers are used to compile DDL interfaces, producing a

client stub and and implementation skeleton in a specific target programming language

according to CORBA language binding specifications. DDL compilers exist to map DDL

to C, C++, Java and many other languages.

2. Interface Definition Language

Interface Definition Language (DDL) is the key to the success of CORBA, so we

will take a look at it first. CORBA 1.1, introduced in 1991, defined the DDL. DDL

provides a language to define the public interface for an object that will be accessible

across the ORB, similar to defining an object in an object-oriented language. The

interface of an object consists of named attributes, operations and the parameters required

by these operations. Using DDL, an object publishes its interface to the common

interconnection bus (ORB), allowing clients connected to the bus know what operations

are provided and how these operations can be invoked across the bus. DDL is the contract

that binds clients to server components.

15

Most importantly, an IDL interface is independent of the programming language

that is used to implement it. From the client program's point of view, only the IDL

interface of a server object is important, the choice of implementation language is not. As

a result, the client can use the same semantics to access different objects implemented by

different languages, through the ORB. As in most object-oriented languages, we also can

use inheritance to define new IDL interfaces.

The following is an IDL interface example of a course registration object.

interface Register

I

courseSeq add_course(in string course_index_number, in string Student_ID,

in string password, in string studentName)

courseSeq drop_course(in string course_index_number, in string Student_ID,

in string password, in string studentName)

};

The above interface provides two operations: add_course and drop „course . Both of

these operations have input parameters course_index_number, Student JD, password and

studentName.

3. ORB Client

Now, let us see how CORBA works on the client side. As Figure 2.2 shows,

CORBA provides two ways for clients to invoke services. The first way is the static

invocation in which client DDL stubs(generated by the IDL compiler) act as proxies to

object implementations. In the context of the client program, the syntax of invoking a

remote object is the same as invoking a local object. When invoking a remote object, the

client requests are forwarded by the client side stubs to the remote object through the

ORB.(Figure 2.5) Sometimes we don't know the services we want to invoke until run

time. Thus, it is not possible to include the DDL stub code in our client code. In such a

situation, dynamic invocation APIs can help us discover a service that we want to invoke

and its definition, then we can issue a request to it.

16

Hostl

method
invocation

Host 2

m 2thod invocation
forwarded by the

I client) ^Y proxy)

method m
invocation return re

sthod invoca
urn

server

ion

Figure 2.5 The Operation Call on a Proxy

The Interface Repository makes dynamic invocation possible. The Interface

Repository maintains full information about interface and type definitions of the IDL

definitions and provides this information at run time. Given an object reference, we can

obtain the interface and all the information about the interface at runtime by calling

Interface Repository's API's.

4. Object Implementation

ORB servers, also called object implementations to distinguish them from the

interface of objects, provide the actual state and behavior of an object. The ORB core

(Figure 2.2) locates an object adapter and forwards requests to the object

implementations through the skeletons. The skeletons are the server IDL stubs that

implement the services that the object exports. In addition, CORBA 2.0 also introduces

dynamic skeleton to provide a run-time binding mechanism for server objects.

The object adapter makes use of the ORB's core communication services to

accept requests on behalf of server objects. It provides the run-time environment to

activate server objects, pass requests to them, assign them an object reference and ensure

the security of interactions. It also records the classes it supports and their run-time

instances in the Implementation Repository. (Figure 2.2)

17

The Implementation Repository maintains information that allows an ORB to

locate and activate implementations of objects. Therefore, the server programmers must

register their code with to the Implementation Repository.

5. ORB and RPC

Anyone experienced with writing client/server applications using RPC (Remote

Procedure Call), will find that the mechanisms of an ORB and RPC are somewhat

similar. Both must specify the interface first (object and its methods in ORB, but remote

procedure names in RPC), use a compiler to generate both client and server stubs, then

link the stubs with your client/server programs. However, there are some significant

differences between ORB and RPC. With RPC, we call a specific function by its name

and the data is separate from the function. In contrast, with the ORB we can invoke a

method within a specific object which manipulates its own private data. The advantages

of ORB over RPC are basically the same as the advantages of object-oriented over

procedural programming language. Furthermore, CORB A provides not only the

communication mechanism between clients and servers, but also a complete environment

to create portable and interoperable client/server applications.

6. Programming Environment

This thesis was developed on the JavaORB for Windows NT 4.0 operating system

with the JavaORB compiler. This environment was selected for the following reasons:

First, Java is a mature and stable product. Second, Java IDL supports CORBA 2.0

features which has a formal specification with BDL to Java mapping. Finally, Windows

NT is more accessible than UNIX workstations and higher reliability than DOS/Windows

3.1/Windows 95. For cost consideration and future expansion, we chose Windows NT

instead of UNIX.

18

III. SYSTEM OVERVIEW

This chapter introduces the transaction concept and describes a global view of our

Object Transaction Service (OTS). The OTS is treated as a "black box" here, and the

components that cooperate to provide the transaction service will be explored in the next

chapter. We focus our attention on the relationship between transactional clients, servers

and the transaction service. OTS operates as a transaction manager. Moreover, OTS also

provides a mechanism to allow the participants to cooperate with the transaction manager

to complete their work.

A. TRANSACTION DEFINITION

OTS provides transaction synchronization across the elements of a distributed

client-server application. In a typical scenario, a client initiates a transaction and then

issues requests. Eventually, the client decides to end the transaction. If there are no

failures, changes are committed; otherwise, changes are rolled back.

B. TRANSACTION PROPERTIES

As introduced in chapter one, the transaction concept is essential for building reliable

distributed applications. We define a transaction as a unit of work, which comprises

several operations made on one or more shared system resources that are governed by

ACID properties, where ACID stands for the Atomicity, Consistency, Isolation, and

Durability properties of a transaction. A unit of work can be transactional only if it

satisfies these properties. Transactions are sequences of operations that are clustered

together.

1. Atomicity Property

The Atomicity property of a transaction requires that this cluster is either

performed completely, i.e. every single operation belonging to the transaction is

successfully executed, or not at all. There is no partial execution of the transaction. Let us

consider the example of the course registration and assume that we perform it as a

transaction.

19

Atomicity states that either both the adding and dropping course operation are

executed together (meaning that the course is being successfully added to the Registrated

Course Table) or none of the operation is performed (meaning that the course is left

where it was). A state in which a course is lost cannot occur. The start of a transaction

denotes a state to which the transaction rolls back if any of its operations fails. If the

transaction is completed successfully, the end of the transaction (which is usually the start

of the next transaction) marks the next valid state.

2. Consistency Property

The Consistency property of a transaction requires that the sequence of

operations leave the set of shared resources in a consistent state at the end of the

transaction. This does not imply that states of inconsistency never occur, but their

occurrence is confined to within a transaction. As such, inconsistent states are hidden for

concurrent transactions and they must be resolved before the transaction is completed.

Revisiting the example of the course registration, a consistency constraint would

be that a course is not lost. This is true at the end of the transaction when the course that

has been copied from one table to the other by adding the name of the student. Within the

transaction, after the adding has been completed but before the dropping has taken place,

the set of account objects are in an inconsistent state as the course iteration is not

complete. Hence it is the application that defines the notion of consistency and it is also

the application that is in charge of ensuring consistency maintenance. If the transaction

has reached a certain state of inconsistency that cannot be resolved, it can abort itself and

recover to the consistent state from which it started. Considering our course registration

example again, if the course has been added to Registered Course table but the other

course is not dropped, the transaction can abort and the transaction mechanism will

rollback to the previous valid state.

20

3. Isolation Property

The Isolation property of a transaction requires that the sequence of operations is

performed in isolation from any concurrent transaction or unprotected activity. This

means also, that any modifications that a transaction makes are not visible to other

resources before the end of the transaction.

In this way other transactions or unprotected activities can never see an

inconsistent state that may arise within a transaction. Likewise, operations performed

within a transaction can never access modifications of other concurrent transactions.

4. Durability Property

The Durability property requires the effect of a transaction to be persistent so that

it cannot be affected by failures. This requires a copy of all modified resources or a

representation of the modifications (a change log) on persistent storage. This persistent

representation can be consulted after a failure to recover to the state of the last successful

transaction. In the case of a transaction between two register objects a transaction

manager would either update a persistent representation of the two register objects at the

end of the transaction, or it would add representations of the operation executions, i.e. the

drop and the add operation with the actual parameter values, to a persistent log. Although

hard disks are most commonly used to achieve persistent storage, this need not

necessarily be the case. It could also be a battery-backed or an erasable PROM. A

transaction can either terminate normally, or when some errors occur. When all the

transactional operations can be performed successfully, the transaction commits and all

the updates will be stored in the persistent storage. If any error occurs during the

transaction processing, the transaction roll backs, that is, it terminates without any update

to the data involved in the transaction. We observe that in order to support the

requirement for atomicity, the data involved in a transaction must be recoverable. When a

server object fails unexpectedly due to some hardware or software errors, the server must

have the ability to recover itself from the persistent storage to retain the all-or-nothing

property.

21

Transactions also can be nested. A nested transaction allows programs to

have transactions embedded in existing transactions. Nested transactions have the

advantage of providing finer granularity of recovery than flat transactions, but also

require additional controls to transaction processing.

In our transaction service, objects involved in a transaction can play one of three

roles: the transactional client, transactional server or recoverable server. We will

examine each of these in the following sections.

C. TRANSACTIONAL CLIENT

A transactional client (TC), also called a transaction originator, is a process that begins a

transaction(Figure 3.1). A transactional client first binds to OTS (Object Transaction

Service) by means of ORB, and issues a begin call to OTS to create a new transaction

context associated with the client program. Normally, the client then issues a set of

transactional operations to several transactional objects which contain recoverable states.

Recoverable, meaning that the objects participating in the transaction must provide

uniform facilities that can cooperate with OTS to maintain the transaction properties

described in section 3.B. Each transactional operation invoked on the target objects will

be explicitly associated with a transaction context shared by all participants of the

transaction.

The transactional client is oblivious to all the processing between OTS and server objects.

It just begins a transaction and sends transactional requests to server objects, then

commits or roll back the transaction.

D. TRANSACTIONAL SERVER

A transactional object is an object whose behavior is influenced by being invoked

within the scope of a transaction. It is not necessary that all methods of a transactional

object be transactional. A transactional object can provide both transactional and

nontransactional operations. In contrast, an object that contains no transactional methods

is a nontransactional object. Typically, a transactional object contains or indirectly refers

to persistent data that can be modified by requests.
22

Transactional
operations

Transactional
Client

Transactional
Server

begin / end
transaction

Recoverable
Server

Not involved in
transaction
completion,
may force rollback

Registers resource in
transaction completion,
may force rollback

Participates in
transaction completion

Transaction Service

Figure 3.1 Object Transaction Service Overview

The Transaction Object receives requests for transactional operations from the

Transactional Client and these requests may be forwarded to the Recoverable Objects or

be performed by the Transactional Object itself.

The transactional server (Figure 3.1) is a collection of objects that are influenced

by a transaction but has no recoverable states of its own. A transactional server

propagates the transaction context to recoverable objects whose methods are invoked.

In a real application, the transactional server may not exist. It is common for the

recoverable server (Section 3.D) to be directly involved in the transaction and manage its

own persistent data.

23

E. RECOVERABLE SERVER

A recoverable object contains persistent data and these data will be modified

within a transaction. We can infer from the definition that a recoverable object is also a

transactional object. The recoverable server (Figure 3.1) is a collection of objects and at

least one of which is recoverable.

To participate in the completion of a transaction, a recoverable object has the

responsibility for implementing some functions defined by OTS. With the help of these

functions, an object can cooperate with OTS to ensure all participants have the same

outcome(commit or rollback) and can recover themselves in the event of a failure. When

recoverable servers are invoked by a transactional client for the first time, they will

register themselves with OTS to become participants of the transactions. At the end of the

transaction, recoverable objects are also involved in the two-phase commit protocol

coordinated by OTS. During the processing of the transaction, recoverable objects must

store certain information in the persistent storage at critical times. As a result, when a

recoverable server restarts after a failure, it can recover its state and participate in a

recovery protocol to complete the transaction.

OTS provides an architected set of EDL-ized interfaces for the objects that make

up the transaction. The principal OTS module is defined to be CosTransactions, inside of

which are defined nine key interfaces. In addition, for interoperability purposes, the

OMG specified the CosTSPortability module separately.

The CosTSInteroperation module defines what is notionally referred to as a

transaction context, a way for the OTS to keep track of the state of a particular part or

thread of a transaction. This context contains the in-depth knowledge about what has

transpired so far in a particular thread (in a threaded environment) or part of a transaction.

This is part of the mechanism used by CORBA transactional systems to impart

the ACID properties that are the hallmark of a transaction. These objects cooperate to

guide the principles of transaction processing. In addition to methods that manipulate

their own data, the recoverable servers, by inheriting some of these interfaces, provide

functions to participate in the transaction completion protocol.

24

F. OTS MANAGER

The OTS manager is the core of the object transaction service. It plays the role of

coordinator among the transaction participants. In other words, the OTS manager

cooperates with transaction participants to preserve the ACID properties during the

execution of a transaction. OTS manager is composed of the following functional

components: Current, TransactionObject, TransactionFactory, Resource, Control,

Terminator, Coordinator and Recovery/Coordinator. These components are specified

with IDL through which other objects may access their services via ORB (see Appendix

A). The functionality of each of these components is illustrated via the following

example. Figure 3-2 depicts the scenario that a TC cooperates with various functional

components of the OTS manager to complete a transaction.

Transaction
Originator

OTS Manager
 }

Figure 3.2. The Functional Diagram of the Applications and the OTS Manager

25

1. The transaction originator begins a new transaction by issuing a request to the

Current object, and a unique Control object is returned.

org.omg.CORBA.Object obj =

orb.resolve_initial_references("TransactionCurrent");

org.omg. CosTransactions. Current current =

org.omg.CosTransactions.CurrentHelper.narrow(obj);

Control control = current. get_control();

2. Through the Control object, the client can connect to Coordinator in order to use

transactional services.

Coordinator coordinator = control.get_coordinator();

3. The transaction originator then begins to invoke operations on the recoverable

objects providing the Coordinator as an input parameter. Registerjresource

operation registers the specified resource as a participant in the transaction

associated with the target object. When the transaction is terminated, the resource

will receive requests to commit or rollback the updates performed as part of the

transaction. These requests are described in the description of the Resource

interface.

Recovery/Coordinator recCoordinator = coordinator.register_resource(r);

4. Recoverable objects will register their Resource objects with the Coordinator the

first time they are invoked within the transaction.

myResource r = new myResource();

orb.connect(r);

5. The client uses the Control object to get the Terminator object to end the

transaction.

current.begin();

current.commitQ; or current.rollbackQ;

The Coordinator will coordinate the termination process among Resource objects

using a proper commit protocol.

coordinator. rollback_only();

26

G. TRANSACTION MODELS

The Transaction Service supports two distributed transaction models: flat

transactions and nested transactions. A flat transaction is a transaction that cannot have

child transactions. Nested transactions, on the other hand, allow subtransactions

embedded within the current transaction.

Nested transactions provide a finer granularity of recovery than flat transactions.

That is, when one of the subtransactions of a parent transaction fails, only the

subtransaction is rolled back. The parent transaction has the opportunity to correct or

compensate for the failure and finish its work. Moreover, subtransactions can be executed

in parallel without the risk of inconsistent results.

A subtransaction is similar to a top-level transaction in that the changes made on

behalf of a subtransaction are either committed in their entirety or rolled back. However,

when a subtransaction is committed, the changes remain contingent upon commitment of

all of the transaction's ancestors. A transaction cannot commit unless all of its children

are completed. When a transaction is rolled back, all of its children are rolled back.

H. PROGRAMMING MODELS

To begin, the developer decides whether to use an explicit or implicit transaction

context propagation model when writing the DDL for the CORBA objects. In the world of

OTS, the scope of a transaction is defined by a transaction context that is shared by

participating objects. A transaction context is created and becomes part of the

environment of a transaction as the transaction begins. It spans the domain of the

transaction by propagation among objects. In the programmer's point of view,

propagation of transaction context in OTS can be implicit or explicit.

1. Implicit Method

Implicit propagation means that requests are implicitly associated with the client's

transaction; they share the client's transaction context. The context is transmitted

implicitly to the objects, without direct client intervention.

27

Implicit method requires the application domain CORBA object interface to inherit

from the TransactionalObject interface. For example:

interface SI:

CosTransactions:: TransactionalObject

I
void op 1(void);

}

This method does not require any modifications to the operation signatures, and

the transactional context passes from point to point in the transaction 'invisibly' through

the stub code. The inheritance requirement indicates to the OTS that transaction context

information is contained in any IIOP messages that is exchanged between clients and

servers.

2. Explicit Method

Explicit propagation means that an application object propagates a transaction

context by passing objects defined by the Transaction Service as explicit parameters.

Explicit method requires that any interface operations that need to be

transactional have an in parameter of type Control. In essence, this is a way for the

transaction to pass itself along from point to point (or server to server) in the transaction

because Control is a sort of handle to the transaction itself. An example would be:

interface SI

I

voidopl(in CosTransactions::Control x);

28

IV. SYSTEM ARCHITECTURE

In Chapter m, we treat Object Transaction Service (OTS) as a "black box" and

focus on the discussion between OTS and transactional clients and servers. In this

chapter, we look into the "black box" and explore our system architecture.

A. OVERVIEW

Object Transaction Service (OTS) defines a set of EDL-ized interfaces for objects

that make up the transaction service. Each DDL interface defines a functional component

and OTS uses these components. Figure 4.1 illustrates the system architecture of OTS.

In the general scenario, the transaction originator begins a new transaction by

issuing a request to a TransactionFactory object and a Control object is returned. With

the methods provided by the Control object, the transaction originator can get a

Terminator object and a Coordinator object.

interface TransactionFactory {

Control create(in unsigned long time_out);

};

interface Control {

Terminator get_terminator() raises (Unavailable);

Coordinator get_coordinator() raises (Unavailable);

};

The transaction originator can use a Terminator object to commit the transaction after

finishing all its transactional operations or rollback the transaction directly.

The Coordinator object is made available to the recoverable objects by

associating it with the transaction context that is explicitly passed to recoverable objects

as a parameter of each transactional operation. When a recoverable object is invoked

within a transaction scope for the first time, it registers a Resource object with the

Coordinator object to participate in the transaction.

29

myResourcer = new myResource();

orb.connect (r);

org.omg.CosTransactions.Current current = getCurrent();

Control control = current.get_control();

Coordinator coordinator = control, get_coordinator();

RecoveryCoordinator recCoordinator = coordinator, register_resource(r);

A Resource object implements the two-phase commit protocol that is derived by

the Coordinator object. In some failure cases, a recoverable object can contact a

RecoveryCoordinator object to determine the outcome of the transaction and complete

the transaction on its side. In the next section, we will take a close look at these

components that make up OTS.

Transaction
Originator

Figure 4.1 System Architecture of OTS

30

B. OBJECT TRANSACTION SERVICE INTERFACES

We describe the interfaces of OTS in this section. Each of these interfaces is

specified by Interface Definition Language(IDL) and represents a functional unit of the

transaction service. Each interface defines the operations and parameters that are

exported to other components of the service. The OTS interfaces specified by the OMG

are listed in Appendix A, and their descriptions also can be found in [1]. These interfaces

will be introduced by following the programming logic. Full details of every operation

will be presented. The transaction coordinator as we have introduced it above is specified

through two interfaces: Current and Coordinator.

The Current interface specifies operations through which transactional clients

access transaction operations to start, commit or abort a transaction. The Coordinator

interface specifies coordination operations that are used by transactional servers

(resources in the CORBA terminology). Finally, the Resource interface specifies

operations that are to be provided by transactional servers in order to implement the two-

phase commit protocol.

1. Current Interface

interface Current {

void beginf) raises(SubtransactionsUnavailable);

void commitfin boolean reportJieuristics) raises (NoTransaction, HeuristicMixed,

HeuristicHazard);

void rollback() raises(NoTransaction);

Status get_status();

string get_transaction_name{);

void set_timeout(in unsigned long seconds);

Control get_control();

Control suspend();

void resume(in Control which) raises(InvalidControl);

};

Interface Current defines the operations that transactional clients use to

manipulate transactions. Operation begin starts a new transaction. If a transaction has

been started before, it starts a subtransaction of the previously started transaction.

31

Operation commit ends a (sub) transaction. If the transaction is the root

transaction, all changes are made durable. Operation rollback reverts all resources

participating in the (sub)transaction to the state they had when the transaction started. The

operation get_control provides a reference to the CORBA object that is the transactional

server's interface. Operation suspend stops the execution of a transaction (without

aborting it). It returns a reference to a coordinator which can be used as an argument to

the resume operation, which continues the execution of that transaction.

2. Coordinator Interface

interface Coordinator {

Status get_status();

Status get_parent_status();

Status get_top_level_status();

boolean is_same_transaction(in Coordinator tr);

boolean is_related_transaction(in Coordinator tr);

RecoveryCoordinator register_resource(

in Resource r) raises(Inactive);

void register_subtran_aware(

in SubtransactionAwareResource r)

raises(Inactive, NotSubtransaction);

};

This Interface presents an excerpt of the Coordinator interface, which is also part

of the transactional coordinator and is used by transactional servers. The two most

important operations of the coordinator interface are register jresource and

register_subtran_aware. They add a transactional server (i.e. a resource) that is passed as

an argument to the set of resources that participate in a transaction or a subtransaction.

The other operations can be used by transactional servers to obtain status information

about the transaction, its parent or the root transaction.

32

3. Resource Interface

interface Resource {

Vote prepare();

void rollback() raises(...);

void commit() raises(...);

void commit_one_pha.se raises(...);

void forget();

};

interface SubtransactionAwareResource:Resource {

void commit_subtransaction(in Coordinator p);

void rollback_subtransaction();

};
Resources that participate in flat transactions must be defined as subtypes of

Resource and those transactional servers that participate in subtransactions must be

subtypes of SubtransactionAwareResource. They then have to redefine the operations

prepare, rollback, commit, commit_one_pha.se and. forget. In the implementation of these

operations, transactional servers would then implement their part of the two phase

commit protocol.

C. CLIENT AND SERVERS

An IDL interface looks like the definition of a C++ class and it indeed maps to an

actual Java class (certainly, it can be any other object-oriented language in other CORBA

implementations). Every object that wishes to be accessible across the ORB must specify

its DDL interface at first, then an IDL compiler generates the mapping Java class, called

JDL Java class, according to the IDL interface in Figure 4.2, it defines Register interface.

An JDL Java class lists the functions that clients of the interface can invoke, and these

functions must be defined in Java (or other object-oriented language) by the implementer

of the interface. With the help of the JJDL Java class, a client can access the remote

implementation objects in the CORBA environment.

A single Java object can implement multiple interfaces and an JJDL interface also

can have different server objects to implement it in different ways.

33

An object server can contain any number of server objects that implement the

same or different DDL interfaces. An object must register itself with an ORB before any

client can access it. A registered server will be activated by an ORB if it is dormant when

one of its methods is invoked.

Mnclude "CosTransactions. idl"

module Project}
exception UnavailableCourse

{
string course_name;

};
struct course
{

string index_number;
string course_code;
string section;
string course_name;
string meeting;
string credits;
string student_ID;

};
typedefsequence<course>courseSeq;

interface Register: CosTransactions::TransactionalObject
{

courseSeq add_course(in string course_index_number,
in string Student_ID, in string password,
in string studentName)

raises (UnavailableCourse);
courseSeq drop_course(in string course_index_number, in string Student_ID,

in string password, in string studentName)
raises (UnavailableCourse);

};
};

(a)

34

Register.idl
(IDL interface)

1
IDL compiler

T
Register

(IDL Java class)

1
used by clients

(b)

Figure 4.2 (a) The Register IDL Interface
(b) The Programming Environment for Clients

1. Begin a Transaction

Initially, there may be one or more OTS servers available in a distributed

environment. Each of these OTS servers provides the same Current object. A transaction

originator can choose any OTS server to be the coordinator site of its transaction. A

transaction originator first binds to the TransactionCurrent object, then invokes the

begin() operation of Current to begin a new transaction.

org.omg.CosTransactions. Current current = getCurrent();

current.begin();

private org.omg.CosTransactions.Current getCurrent() {

System.err.printlnC'Session: resolve transaction current");

try{

org.omg.CORBA.Object obj =

orb. resolve_initial_references("TransactionCurrent");

org.omg.CosTransactions.Current current =

org.omg.CosTransactions.CurrentHelper.narrow(obj);

35

iß current == null) (

System.err.println("current is not of expected type");

}

return current;

}//end of try block

catch(org.omg.CORBA.ORBPackage.InvalidName in)

{

System.err.println(in);

return null;

}//end of catch block

}//end of getCurrent() method

When receiving the request, the Current object will create a Control object and

return a reference to the Control object to the client (Figure 4.3). The transaction

originator also can give a time-out value to set the maximum transaction processing time.

If the time-out expires, the transaction will rollback.

void set_timeout(in unsigned long seconds);

I
I

getCuryent

returnCohtrol

(Control' J

 i

Figure 4.3 Begin a Transaction

After creating the Control object to control the new transaction, The Control

object is associated with the new transaction and responsible for the processing of the

transaction.

36

2. Transaction Coordinator

When a Control object is created, a Terminator object and a Coordinator object

are also created. The Control object provides two functions:

Terminator get_terminator() raises (Unavailable);

Coordinator get_coordinator() raises (Unavailable);

The get_terminator() operation of Control returns the object reference of the Terminator

object and get_coordinator() operation Control returns the object reference of the

Coordinator object. A transaction can involve multiple objects performing multiple

requests. All participating objects share the same transaction context that defines the

scope of the transaction. We must have a mechanism that allows the objects involved in

the transaction service and add related information to the transaction context. A

Coordinator object is responsible for maintaining the transaction context and providing

operations that are used by participants of the transaction. A transaction participant, i.e., a

recoverable object, must issue a register_resource() operation to the Coordinator object

when one of its transactional operations is invoked by the transaction originator for the

first time. Owing to we adopt implicit way to propagate the transaction context, just

because of this reason I defined ,prepared a new myResourse.java class; all transactional

operations of a recoverable object must have an object reference to the Coordinator

object as the last parameter(Figure 4.4).

myResource r = new myResource();

orb.connect(r);

RecoveryCoordinator recCoordinator = coordinator. register_resource(r);

public class myResource extends org.omg.CosTransactions._ResourceImplBase
implements org.omg.CosTransactions.Resource

{
public org.omg.CosTransactions. Vote prepare()
{

System.out.println("Resource: PREPARE");
// We indicate that we are OK to commit
return org.omg. CosTransactions. Vote. VoteCommit;

}//end of prepare method

37

/ * Operation rollback*/
public void rollback{){

System.out.println("Resource: ROLLBACK");
} //end of rollback method
/* Operation commit */
public void commit()

f
System.out.println("Resource: COMMIT");

}//end of commit method
/ * Operation commit_one_phase */
public void commit_one_phase() {

System.out.println("Resource: COMMIT_ONE_PHASE");

}//end of commit_one_phase method
/ * Operation forget */
public voidforget()

{
System. out.println("Resource : FORGET");

}//end of forget method
}//end ofmyResource class.

Client
op(..., Coordinator*)

register_resource() \ RecoveryCoordinator

Figure 4.4 The Propagation of Transaction Context

A Coordinator object maintains a database that records the object references of

the transaction participants. When the transactional originator commits the transaction,

the Coordinator object uses this information to perform the two-phase commit.

38

The Terminator object defines two operations to end a transaction. Typically,

these operations are used by the transaction originator. The transaction originator issues

the commit() operation to mark the end of the transaction. In some cases, a transaction

originator may wish to rollback the transaction it creates directly, then it uses a rollback()

operation to end the transaction. The register_resource() operation of Coordinator

returns the object reference of a RecoveryCoordinator to the recoverable object.

Recovery Coordinator recCoordinator = coordinator.register_resource(this);

In certain situations, a recoverable object can use the replay_completion() function

provided by RecoveryCoordinator object to drive the recovery process(Figure 4.4).

3. Transaction Participants

Except for their own operations, transaction participants, i.e., recoverable objects,

must implement transactional behavior to ensure the isolation and durability properties of

transactions. To complete a transaction, transaction participants have the responsibilities

to:

• register themselves with the Coordinator object for transaction completion;

• participate in two phase commit protocol; and

• support transaction recovery.

While registration was described in Section 4.2.3 and issues about recovery will be left to

the next chapter, we discuss the two-phase commit protocol in this section.

The Object Transaction Service uses the two-phase commit protocol to complete a

transaction with each registered Resource object. The two-phase commit protocol is a

well known atomic commit protocol and is applied in many practical systems.

It is designed to allow any recoverable object to abort its part of a transaction. If

any part of a transaction is aborted, then the whole transaction must be aborted for

atomicity.

39

As implied in the name, the processing of the two-phase commit protocol can be

divided into two phases. In the first phase, all recoverable objects(transaction

participants) return their votes for the transaction outcome. In the second phase, every

transaction participant carries out the joint decision.

It is the transaction originator that issues commit (or rollback) to the transaction and the

request is directed to the Coordinator object. The Coordinator object then communicates

with the transaction participants to complete the two-phase commit protocol. The

Resource object provides operations invoked by the Coordinator object on each

recoverable object. The communication of two-phase commit protocol is depicted in

Figure 4.5.

(control)

1. prepareQ
2. return VoteCommitA/oteRollback/

VoteReadOnly
3. commit()/rollback()/commit_one_phase()

Figure 4.5 Communication in Two-Phase Commit Protocol

40

4. Processing of Two-Phase Commit Protocol

The processing of two-phase commit protocol can be divided into the following

four steps:

1. The Coordinator object invokes the prepare() method on each recoverable object.

2. When a recoverable object's prepare() is invoked, it checks its own state to see if

it can commit its part of the transaction, then replies its vote to the Coordinator

object. The vote can be VoteReadOnly, VoteCommit or VoteRollback.

3. The Coordinator object collects the votes from each recoverable object, then (a)

If any recoverable object returns VoteRollback, the Coordinator object decides to

rollback the transaction and invokes the rollback() on all recoverable objects

which reply VoteCommit. (b) If at least one recoverable object votes VoteCommit

and all others vote VoteCommit or VoteReadOnly, the Coordinator object can

commit the transaction by invoking the commit() on each of recoverable objects,

(c) If all recoverable objects vote VoteReadOnly, the transaction can complete

immediately and there is no further operation is required.

4. Recoverable objects that vote VoteCommit are waiting for a commitQ or a

rollback() from the Coordinator object. Each of the recoverable objects must

implement their commit and rollback operations, so that they can act accordingly.

interface Resource {

Vote prepareQ;

void rollback() raises(...);

void commitQ raises (...);

void commit_one_phase() raises(..);

voidforget();

I;

41

In the special case of only one participant registered for a transaction, the first

phase(voting phase) is not necessary. Instead of issuing prepare () and commit() or

rollback() on the single recoverable object, the Coordinator object can invoke

commit_one_phase().

42

V. IMPLEMENTATION ISSUES

A. BACKGROUND REVIEW

As we have discussed in Chapter IV, when a transactional client begins a new

transaction, a set of functional components, including Control, Terminator, Coordinator

and Recovery/Coordinator, will be created to play the manager role of the new

transaction. OTS provides separate IDL interfaces that define the above components. The

benefit of dividing the transaction manager role into several functional components is that

OTS can create several different views of the transaction manager. The transactional

client and recoverable servers can only access the indispensable part of manager

functions. For example, if OTS passes the reference of a Coordinator object to the

recoverable servers, then the recoverable servers have no access to the operations defined

by the Terminator interface to end the transaction.

As described before, an object can implement multiple IDL interfaces if it

provides all the functions in these interfaces. For the convenience of implementation, we

construct a composite object to implement these four interfaces. But the users still only

can get the separate views of the transaction manager. As shown in Figure 5.1, the IDL

compiler generates an DDL Java class for each interface and Java ORB provides

mechanisms to "tie" the IDL Java class and its object implementation together. The

programming environment hides the actual implementation from the users (transactional

client and recoverable servers), and creates separate views for them.

43

Real Implementation of
Transaction Manager

Control Coordinator Terminator Recovery-
Coordinator

Control
Coordinator
Terminator
RecoveryCoordinator

(IDL Interface)

IDL Compiler OOö ö
Control Coordinator Terminator Recovery-

Coordinator

Requests

(IDL Java Class)

t t t i
Figure 5.1 The Interfaces and Transaction Manager

B. OVERVIEW OF THE EXAMPLE

This chapter describes the development of distributed, object-based transactional

applications with JavaORB OTS using a sample Java application. At the beginning of

each quarter all Computer Science students fill a course request form for the next quarter

course schedule. The iteration scenario requires students to access a remote database to

insert or delete a class from RegisteredjCourse table. Students select the Course from the

course table. Each student accesses database by using a Client program defined in Java. A

server program controls access to the database.

Computer Science students need to make some transactions on this database.

Using Corba we can create a distributed, client /server, object-based transactional

program.

What happens if any error occurs during a single user's transaction? For example,

attempting to register for an invalid course, or attempting to drop a course for which the

student is not registered. How can we turn back without making any change to database?

Corba Object Transaction Service will handle this problem.

44

What happens when two or more users attempt to update a Registered_Course

table at the same time? For this purpose, synchronized methods and locks can be used to

solve concurrency problem.

During a transaction, a course is transferred between the Course and the

Registered_Course tables-depending upon the parameters passed to the client program.

The programs for the Registration Request are:

1. Registrationlmpl : The Registrationlmpl program takes input from the Client

program via a Server object. This program connects to the database by using JDBC. As a

database application this programs takes the desired course from the student and copies

this course from the Core Course tables and inserts this course in the RegisteredjCourse

table together with the name of the student. It then begins a transaction and performs the

requested transfer. After all requested transfers have been completed, it requests to

complete the transaction (either commit or rollback). A lock object is used in both

synchronized drop_course and add_course methods to lock these methods for

concurrency transactions, also unlock function is activated in commit or rollback

statements.

2. Server : The Server program, creates a Server object and binds to a

Registrationlmpl object.

3. Client : The Client Program prepares the GUI to assist the user student in

entering the new course for adding or for dropping an old course from the database. Also

the client program displays the current course schedule. The client ensures that changes

made during the transaction to courses are stored persistently (if committed), or that the

courses are returned to their state before the transaction (if rolled back).

45

Development and design of a sample CORBA project, is discussed below.

Unlike the other examples, this is a more complete one involving a GUI interface and a

backend database. JavaORB from Distributed Object Group (DOG), is used because this

vendor supplies a free version of Corba Transaction Service together with CORBA

architecture.

C. A JAVA-CORBA SAMPLE

Here are the steps to implement The Course Registration Program:

1 . Implement a simple interface in DDL that defines the Register object required for

the Course Registration application, See "Writing the Project IDL" in this chapter.

2 . Implement the client program and transaction originator (Client): gather input from

the user about which course will be added or dropped from the database, initialize the

ORB, get the Register Reference from a file, narrow the object reference to Register

object, obtain a reference to a transactional object (Register) in addjoourse and

drop_course methods, perform actions with the transactional object (Register), commit or

rollback the transaction, and handle exceptions.

3 . Implement the Server program: initialize the ORB and BOA, create and register the

object then declare the transactional object, connect the instance to the BOA, export the

object reference into a file, then wait for incoming requests,

4 . Implement the Registrationlmpl: this class handles the database connectivity for

the server side, also corresponding to the request of the client, make add and drop

courses from the tables under the control of transaction rules defined by this itself,

performs actions with the transactional object (Register), commit or rollback the

transaction, and handle exceptions.

5 . Implement myResource class: defines the resource class operation that will be used

myresource class used in Registrationlmpl class.

6 . Implement lock class: handles the lock and unlock function that is used in add and

drop course methods.

46

D. WRITING THE PROJECT "IDL"

The first step to creating a transactional application with JavaORB OTS is to

specify all of our interfaces using the CORBA Interface Definition language (IDL). IDL

is language-independent and has a syntax similar to Java, but can be mapped to a variety

of programming languages.

Mnclude "CosTransactions. idl"

module Projectf
exception UnavailableCourse

{
string course_name;

I;
struct course
f

string index_number;
string course_code;
string section;
string course_name;
string meeting;
string credits;
string student_ID;

};
typedefsequence<course>courseSeq;

interface Register: CosTransactions:.TransactionalObject
{

courseSeq add_course(in string course_index_number,
in string Student_ID, in string password,

in string studentName)
raises (UnavailableCourse);

courseSeq drop_course(in string course_index_number, in string Student_ID,
in string password, in string studentName)

raises (UnavailableCourse);
};

};

Figure 5.2 Project IDL

DDL sample shows the contents of the Project.idl file which defines the three

objects required for the Registration Course. Note that;

47

The Register interfaces inherits from CosTransactions::TransactionalObject

because this interface must participate implicitly in the transaction. If we do not inherit it

from CosTransactions::TransactionalObject it does not participate in the transaction.

Also note that the IDL file must include the CosTransactions.idl file.

This provides the IDL for the CosTransactions::TransactionalObject interface

from which the transactional objects must inherit. The IDL is used by the JavaORB's

idl2java compiler to generate Java stub routines for the client program, and skeleton code

for the server objects. The stub routines are used by the client program for all method

invocations.

We use the skeleton code, along with code we write, to create the server programs

that implement the objects. The code for the client and servers, once completed, is used

as input to our Java compiler to produce your client and server programs.

E. INTERFACE DEFINITION LANGUAGE (IDL) TO JAVA MAPPING

When developing a CORBA application, the first step is write the JDL file(s) for

the project. After developing the IDL, the idl2java compiler was used to create the

necessary stubs and skeletons for Java, so that CORBA clients can communicate with our

CORBA server. It should be noted that the IDL is part of the CORBA standard; therefore,

it may be used with any CORBA implementation. IDL is used to specify CORBA

objects, what methods they have, what types they return, etc. The example in Figure 5.2

is an idl file called Project.idl. It defines one CORBA object: Register. As we can see it

does not resemble Java. EDL does not provide implementation but the interfaces to the

object.

1. Modules

An interface can be defined within a module. This allows interfaces and other IDL-type

definitions to be grouped together in a useful fashion. Modules also create naming scope.

This means that a type name used in one module, will not conflict with the same name

used in another module. The idl2java compiler, maps modules to Java packages.

48

2. Interfaces

An DDL interface provides a description of the functionality that will be provided

by a CORBA object. An interface provides all the information needed to develop a client

that can use this defined interface to interact with the object. In the above Project.IDL we

have the Register interface. In an interface you typically declare: constants, types,

exceptions, attributes, and operations.

3. Exceptions

The standard way of processing errors in CORBA is through exceptions. An DDL

operation may raise an exception indicating that an error has occurred. There is an

example of an exception in Figure 5.2. This example shows that an exception

UnavailableCourse is raised when the course code that was set is invalid. In addition

to supporting customized exceptions, CORBA defines a set of standard exceptions.

4. Structures

A struct data type allows related items to be grouped together in a useful fashion.

An IDL struct maps to a final Java class that contains one instance variable for each

structure field. The class name is the same as the DDL structure name.

5. Sequences

A sequence is a one dimensional array with two characteristics: A maximum size

(which is fixed at compile time) and a maximum length (which is determined at run-

time). A sequence is similar to a one dimensional array but it is not fixed length.

Example:

typedef sequence<long> myUnboundedArray;

or you can have a bounded sequence:

typedef sequence<long, 10> myBoundedArray;

49

6. Strings

The string type is implemented in a way similar to a sequence of char, which may

be bounded or unbounded. Below is an example:

interface library

{

//Bounded string

attribute string mystring<12>

//Unbounded string

attribute string title

}

7. CORBA Parameters

Corba defines three parameter passing modes: in, out and inout. In parameters

pass from client to server, out parameters pass from server to client, and inout

parameters pass from both directions.

F. WRITING THE TRANSACTION ORIGINATOR (CLIENT PROGRAM)

The file named Client.java contains the implementation of the Java client program

that is also the transaction originator. The Client program gathers input from the user and

performs a single OTS-managed transaction

The Client program performs these steps:

1. Initializes the ORB.

2. CosTransactions Service initialization

3 . Get the Transactional server reference from an object file.

4. Narrow the object reference.

5 . Get the current object and Begin a transaction,

a. Obtains a reference to the transactional objects

6. Invokes the add_course() and drop_course() methods on the Registerlmpl class

objects for each course entered into to the client program. It prints out the current Course

Schedule for each Student after the transaction.

7. Commits or rolls back the transaction.

50

1. Initializing the ORB

The first task the transaction originator needs to do is initialize the ORB, as shown

in Code sample 5.1. The parameters args and null must be passed to the ORB, the BOA,

and the OTS Transaction Service instance.

Code sample 5.1 Example of Initializing the ORB with Java

public static void main(String[] args) throws Exception

{

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);

2. CosTransactions Service Initialization

The second task the transaction originator needs to do is initialize the

CosTransactions, as shown in Code sample 5.2. The parameter orb must be passed to the

Boot.init() method.

Code sample 5.2 Example of initializing the CosTransactions Service

public static void main(String[] args) throws Exception

{

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);

org.omg.CosTransactions.Boot.init(orb);

3. Get the Transactional Server Reference from an Object File

The third task the transaction originator needs to do is get the Transactional server

reference from an object file , as shown in Code sample 5.3. The client application is very

simple, to get Transactional server reference we use a file " Objectld " to which the

Server will write its reference.

51

Code sample 5.3 Get the Transactional Server Reference from an Object File

org.omg.CORBA.Object obj = null;

try{

java.io.FileInputStreamfile = new Java. io.FilelnputStream ("Objectld");

java.io.DataInputStream mylnput = new java.io.DataInputStream(file);

String stringTarget = mylnput. readLine();

obj = orb.string_to_object(stringTarget);

}

catch (java.io.IOException e){

System.out.println("Server reference not available... ");

Systenuexit(O);

}

4. Narrow the Object Reference

The fourth task the transaction originator needs to do is narrow the object

reference, as shown in Code sample 5.4 references to remote objects in CORBA use a

helper class to retrieve a value from that object. A commonly used method is the helper

narrow method, which ensures the object is cast correctly.

Code sample 5.4 Narrow the Object Reference

static Register orblet = null;

try{

java.io.FileInputStream file = new java.io.FileInputStream ("Objectld");

java.io.DataInputStream mylnput = new java.io.DataInputStream(file);

String stringTarget = mylnput. readLine();

obj = orb. string _to_object(stringTarget);

}

catch (java.io.IOException e){

System.out.println("Server reference not available...");

System.exit(0);

}

//Narrow the object reference

orblet = RegisterHelper.narrow(obj);

52

5. Get the Current Object and Begin a Transaction

Before beginning a transaction, you must obtain a transaction context. OTS-

managed transactions are handled transparently to your application with Current--an

object that maintains a unique transaction for each active thread. To use an ITS-managed

transaction, you must obtain a reference to this Current object. The Current object is valid

for the entire process under which you create it, and can be used in any thread.

Code sample 5.5 shows how to obtain an OTS-managed transaction. First an

object reference is obtained for the TransactionCurrent object using the

resolve_initial_references() method. The Current object returned from this method is

then narrowed to the specific CosTransactions.Current object using the narrowQ method.

Code sample 5.5 Get the Current Object

private org.omg.CosTransactions.Current getCurrent() f

System.err.println("Resolve TransactionCurrent to get access to Current object. ");

try{

org.omg.CORBA.Object obj = orb.resolve_initial_reference s ("TransactionCurrent");

org.omg.CosTransactions.Current current =

org.omg.CosTransactions.CurrentHelper.narrow(obj);

ifi current == null) {

System.err.println("current is not of expected type");

y/endofif

return current;

}//end of try

catch (java.lang.Exception e)

{

System. err.println(e);

return null;

}//end of catch block

}//end ofgetCurrent()

53

To perform work that is managed by OTS, you must first begin a transaction

using the Current interface's begin() method. Only one OTS-managed transaction can be

active within a thread at a time. Code sample 5.6 shows the transaction originator

beginning an OTS-managed transaction.

Code sample 5.6 Example of Beginning a Transaction

//get current

org.omg.CosTransactions.Current current = getCurrent();

//Begin a transaction

System.out.println("Begin a transaction.");

current.begin();

6. Invoking Methods on the Registerlmpl class from Client Program

To invoke methods of the Register Interface, we have to define the object (orblet)

by the name of the Register Interface as described in Code Sample 5.3. This object is

used to invoke the methods (add_course() and drop_course()). The methods of the

Register Interface can be invoked If the object of that interface (register) being gained by

the help of that Interface(Register). Code sample 5.6 shows the details of invoking a

method of the Registerlmpl class from the Client side(Transaction Originator).

54

Code sample 5.6 Invoking the add_course() and drop_course() Methods on

the Registerlmpl Class

static course[] data = new course[100];

public void addCourse(){

try{

//get current

org.omg.CosTransactions.Current current = getCurrentQ;

//Begin a transaction

System.out.println("Begin a transaction. ");

current.begin();

System.out.println(addCourseTextField.getText());

String course_index_number = addCourseTextField.getText();

String studentName= studentNameTextField.getText();

data = orblet.add_course(course_index_number, student_ID, password,

studentName);

System.out.println(" Commit the transaction ");

current.commit(true);

System.out.println("The transaction has been commited");

}//end of try

catch (java.lang.Exception e){

System.err.println("No transaction - rollback:\n " + e);

try I

System.out.println("Current Transaction is rolling back");

currentrollbackO;

}//end of try

catch(org.omg.CosTransactions.NoTransaction nt) {

System.err.println("\nNo transaction " + nt);

System.exit(1);

}//end of second catch

}//end of first catch

}

55

7. Committing or Rolling Back a Transaction

Once a transaction has begun, it must be committed or rolled back to complete the

transaction. If an originator of an OTS-managed transaction does not complete the

transaction, the OTS Transaction Service will rollback the transaction after a timeout

period. However, it is important to commit or rollback transactions so that hung

transactions do not consume system resources. Code sample 5.6 shows how the client

program uses the commit variable to decide whether to commit or rollback the

transaction. If the commit variable is true, the transaction is committed. If the commit

variable is false, the transaction is rolled back. In Code sample 5.6, the false parameter

sent to current.commitO means that heuristics will not be reported. Note that the test for

whether to commit or roll back is contained within a finally clause of the previous try

clause. This is to ensure that an unexpected exception does not bypass this code.

Code sample 5.7 Example of Committing or Rolling Back the Transaction

boolean commit = false;
try
{

commit = true;
}

finally
{
// Commit or roll back the transaction

if (commit) {
System.out.println("*** Committing transaction ***");

current. commit(false);
1
else {

System.out.println("*** Rolling back transaction ***");
current. rollbackQ;

}
}

56

H. WRITING THE SERVER PROGRAM

The Server program performs these steps in the main routine:

1. Initializes the ORB.

2. CosTransactions Service initialization.

3. Initializes the object adaptor(BOA).

4. Declare the transactional object.

5. Connect the transactional object to BOA.

6. Convert the transactional object's reference to string.

7. Put the transactional object's reference into a file.

8. Then wait for incoming requests from the Clients.

1. Initializing the ORB , the CosTransactions and the BOA in the Server

Program

Before instantiating the Register object, the main routine must make three calls-

one to the ORB, the other to the Basic Object Adaptor (BOA) and the third to

CosTransactions. After the ORB is initialized the CosTransactions service is initialized

using the current orb as a parameter.The BOA is the interface between the object

implementation and the ORB. The BOA allows your object to notify the ORB when it is

ready to accept client requests and informs it when client requests are received. The

programming details for this explanation are given in Code sample 5.8.

Code sample 5.8 Initializing the ORB, CosTransactions and BOA in the

Server

public static void main(String args[]) throws Exception {

//Initialize the ORB

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);

//CosTransactions Service initialization

org.omg.CosTransactions.Boot.init(orb);

II Initialize the BOA

org.omg.CORBA.BOA boa = org.omg.CORBA.BOA.init(orb,args);

57

2. Declare the Transactional Object and Connect it to Basic Object

Adaptor

While explaining the Project.idl in Figure 5.2, we focused on the Register

interface. We pointed out that this interface is a Transactional object. For this reason we

defined on the server side a new object by using Registerlmpl class (actually extends

_RegisterImplBa.se that is also transactional) by sending orb object, to make a direct

relation between Server class and Registerlmpl class. Then we connect the instance of

this object to the basic object adapter that is initialized in this server program to make

connectivity between Server and Registerlmpl efficient. The programming details for this

explanation was given details in Code sample 5.9.

Code sample 5.9 Declare the Transactional Object and Connect it to Basic

Object Adaptor
// Then declare the transactional object

Registrationlmpl orblet = new Registrationlmpl(orb);

// Connect the instance to BOA

boa.connect(orblet);

3. Convert the Transactional Object 's Reference to String and Convert

it's Reference to String

On the client side a file named an "ObjectID" was used to read the object

reference of the Server side to make a connection to the client side object reference via

the basic object adapter.(Code sample 5.3) Next a string reference for the transactional

Register Object is obtained and placed in a "ObjectID" file to make the client side

connectivity by the help of basic object adaptor. The programming details for this

explanation was given details in Code sample 5.10.

58

Code sample 5.10 Convert the transactional object 's reference to string and

Convert it's reference to string

//Export into a file the object reference

String reference = orb.object_to_string(orblet);

//then put it into a file

try{

Java. io. FileOutputStreamfile = new Java. io. FileOutputStream("Objectld");

java.io.PrintStreampfi.le = new java.io.PrintStream(file);

pfile.printlnf reference);

}//end of try

catch (java.io.IOException ex){

System.out.println("Unable to export server reference");

}//end of catch

4. Then Wait for Incoming Requests from the Clients.

This method tells the orb that the implementation object has been created and is

ready to take requests from the client. The programming details for this explanation was

given details in Code sample 5.11.

Code sample 5.11 Wait for Incoming Requests from the Clients..

// Then wait for incoming requests

try{

System.out.println("The server is ready...");

boa.impl_is_ready();

}//endof try

59

I. WRITING THE TRANSACTIONAL OBJECT (REGISTER)

There are a few tasks to complete to implement the transaction^ (Register) object:

• Derive the Registrationlmpl class from the RegisterlmplBase class.

• Implement the Register object with implementations for the add_course(...)

and drop_course(...) methods that activates the Database Connection.

1. Understanding the Registrationlmpl Class Hierarchy

The Registrationlmpl class that was implemented is derived from the

_RegisterImplBase class that was generated by the idl2java compiler.The

_RegisterImplBase interface is in turn derived from the TransactionalObject interface.

Project :: Register inherits from CosTransactions :: TransactionalObject so that the

transaction context is propagated to it automatically by the OTS Transaction Service.

2. Implementing the Registrationlmpl Object and its Methods

As shown in Code sample 5.12, the Registrationlmpl interface defines its

constructor which creates an Registrationlmpl object with the lock and orb parameters.

The Orb object is created by Server in it's main. Lock is defined by another class to allow

concurrent access to the methods of Registrationlmpl class. Resource object will be

explained later in this chapter.

Code sample 5.12 Constructor for the Account object

public RegistrationImpl(org.omg.CORBA.ORB orb)

{

this._orb = orb;

lock = new Lock();

iß -orb == null) {

System.err.println("orb is not of expected type");

JZ/endofif

r = new myResource();

orb.connect(r);

}//end of Registrationlmpl constructor.

60

3. Implementing Methods of the Registrationlmpl Object

The Registrationlmpl object defines some useful functions that will be used by

other methods for simplicity, these methods have been created for use by other

programmers to make their program efficient. These methods may be implemented as

Java classes in future or maybe inserted into CosTransactions.jar file to make the

programmers more efficient.

As shown in Code sample 5.13.a, the Registrationlmpl object implements a

markForTransactionBegin () method. When invoked, this method starts a new

transaction by locking this object until it is unlocked by the markForRollbackQ or

markForCommitQ method. The markForTransactionBegin method gets the current

object from another user defined method named getCurrentQ.

A resource must be registered with the Transaction Service. Since we have our

own resource implementation (myResource.java), we must take care of the registration of

the resource with the transaction service. A Current object is obtained using the CORBA

bootstrap mechanism. From Current we get the Control object, and from it the

Coordinator object. The resource can then be registered with the Coordinator object.

Code sample 5.13.a Implementation of the markForTransactionBegin

method

public void markForTransactionBegin(){

//This operation register a resource and mark transaction to be rollbacked only

try {

//lock addjzourse

locLlockQ;

//get current

current = getCurrent();

System. out.println("start transaction ");

current.begin();

61

//get control and coordinator

String transName = current.get_transaction_name();

System.out.println("RegistrationImp:name of the transaction : " + transName);

org.omg.CosTransactions.Status currentStatus = current.get_status();

System.out.println("RegistrationImpl: status of the transaction: " +
currentStatus. value());

System.err.println("RegistrationImpl: get control");

Control control = current.get_control();

System.err.println("RegistrationImpl: get coordinator");

coordinator = control.get_coordinator();

//register resource

System.out.println("RegistrationImpl: register resource with OTS");

recCoordinator = coordinator, register_resource(r);

}// end of try block

catch (java.lang.Exception e){

System.err.println("markForTransactionBegin catch block\n" + e);

}

}//end ofmarkForTransactionBegin method

Code sample 5.13.b shows the implementation of markForRollback() method. When

invoked, this method calls rollback_only() to force the transaction originator to rollback

the transaction.

Code sample 5.13.b Implementation of the markForRoIlback method

public void markForRollback(){

try I

//unlock add_course

locLunlock();

coordinator. rollback_only();

}//end of try block

62

catch (java.lang.Exception e){

System, err.println(e);

throw new org.omg.CORBA.BAD_PARAM();

}//end of catch block

}//end ofmarkForRollbackO

Code sample 5.13.C shows the implementation of a markForCommit () method. When

invoked, this method calls commit() to force the transaction originator to commit the

transaction. This method also unlocks the transactional object.

Code sample 5.13.C Implementation of the markForCommit method

public void markForCommit() {

try {

//unlock add_course

locLunlock();

org.omg.CosTransactions.StatuscurrentStatus2 = current, get_status();

System.out.println("RegistrationImpl: status of the transaction:"+

currentStatus2. value());

current.commit(true);

System.out.println("Transaction has been Committed");

org.omg.CosTransactions.Status currentStatus3 = current.get_status();

System.out.println("RegistrationImpl: status of the transaction: " +

currentStatus3. value());

} //end of try block

catch (java.lang.Exception e) {

System. err.println(e);

markForRollbackO;

}//end of catch block

}//end ofmarkForCommitO

Code sample 5.13.d shows the implementation of a getCurrent () method. When invoked,

this method calls getCurrent () to force the current object be created and transmitted to

the caller.

63

Code sample 5.13.d Implementation of the getCurrent method

private org.omg.CosTransactions.Current getCurrent() {

System.err.println("Session: resolve transaction current");

try {

org.omg.CORBA.Object obj =

_orb. resolve_initial_references("TransactionCurrent");

current = org.omg.CosTransactions.CurrentHelper.narrow(obj);

iß current == null) {

System.err.println("current is not of expected type");

}//endofif

return current;

}//end of try

catch (java.lang.Exception e) {

System, err.println(e);

return null;

}//end of catch block

}//end of getCurrent()

4. Implementing the Lock Object

In the Registration implementation a lock is used to serialize the access to the

object. As shown in Code sample 5.14, the Registrationlmpl object also implements a

lockQ or unlockQ method. The lock is essentially a Boolean variable, which indicates if

an object is locked or not. The lock method sets the lock variable to true. If the object is

already locked , it waits for a Java event notification, which is caused by the unlockQ

method using notifyAUQ. The unlockQ method also sets the lock variable back to false.

Code sample 5.14 Implementing the Lock Object

package transaction, mil;

public class Lock {

private boolean locked;

public LockQ {

locked = false;

}

64

synchronized public void lock() {
while(locked) {

try{
this.wait();

}
catch(InterruptedException e) {

}
}
locked = true;

}

synchronized public void unlock() {
locked = false;

this.notifyAll();
}

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

VI. CONCLUSIONS

A. CORBA OBJECT TRANSACTION SERVICE

What is an ideal programming environment for the application programmers? The

answers may be various and dependent on the requirements of the programmers.

However, one thing is sure, that by some software techniques, we can prevent some

programmers from "reinventing the wheel" repeatedly in the same domain.

The concept of transactions is not only useful in database applications, but is also

useful in building robust distributed mission-critical applications. Over the years, it has

been shown that distributed applications can be built effectively using distributed object

technology for its strong support of heterogeneous platforms. The Object Transaction

Service (OTS) specification advocated by OMG's CORBA standard defines the

fundamental transaction service to support rapid development of transactional

applications in a distributed object environment. This thesis presents an implementation

of the Object Transaction Service (OTS).

CORBA defines a common software interconnection bus and forms a basic

building block for distributed object computing. It does really make sense if we can

provide some common object services that programmers can integrate their own code

with these services to develop a mission critical client/server software easily. The OTS is

our first attempt. To support a complete transaction service, our work can be divided into

two parts. On one hand, we provide transaction factories that will create a new

transaction coordinator for each transactional client's request. The client contacts its own

transaction coordinator to process the transaction. The transaction coordinator is based on

a presume abort two-phase commit protocol and it will store certain information in stable

storage when it makes the decision to commit or rollback the transaction. Thus, if some

failures occur after the transaction has a consensus outcome, the transaction will recover

later and complete the remaining work.

67

On the other hand, the implementations of the server objects also have to follow

some principles, thus they can act properly during the transaction processing. By using

inheritance, we also reduce the work to implement transactional server objects and still

keep the flexibility.

There are still some ways to improve our transaction service. We only support the

flat transaction model now, and the ability to handle the nested transaction model can be

added to this transaction service in the future. Another aspect of the transaction service

that can be improved in our next version is the propagation of the transaction context. We

must pass the transaction context explicitly in each transactional function now. This is a

burden for the application programmer.

The OMG also has defined the standards of other object services, e.g. the life-

cycle service, the persistent service, the event service, the concurrency service and so

on[2]. By specifying these services, the OMG tries to provide a way to build custom

middleware. In the near future, application programmers may only have to choose the

proper object services and integrate them with their own programs to build robust

distributed software systems.

B. JAVA DATABASE CONNECTIVITY TRANSACTION SUPPORT

In the CORBA and Java -application model, access to database can be

accomplished in much the same manner. Java, however, brings a new variant into play,

Java Database Connectivity (JDBC). JDBC is the Java interface to the Standard Query

Language (SQL) and is implemented in the java.sql package. Most database vendors, as

well as several third-party providers, sell JDBC drivers. Drivers are either direct, sitting

on top of the database's native interface, or ODBC-bridged, mapped to an ODBC

implementation for a particular database.

The big advantage of using JDBC, of course, is its inherent cross-database, cross-

platform capability. This makes any JDBC program theoretically portable to dozens of

major SQL databases and platforms without any code rewrite.

68

It is possible to use an ORB implementation to talk directly through a database

native client library or ODBC, given that the proper IDL definition exists.

Transaction support is an important element of large-scale, enterprise-wide

deployments. In recent years, the definition of a transaction has broadened from simple

database operations to include operations against a variety of network objects. In fact,

any group of operations that acts together in a logical, dependent manner can be viewed

as a transaction. If any one of the object services fails, the entire transaction fails, and any

previous operations need to be rolled back.

CORBA and JDBC both provide transaction support. CORBA services includes a

transaction service that supports single- and two-phase commit, rollback, and nested

transactions. JDBC has built-in transaction support; new database statements are

automatically committed after each executes successfully. Finer-grain control for

multiple statements and rollback can be achieved by using the JDBC Connection object's

setTransactionIsolation() method in conjunction with the commit() and rollback()

methods. The JDBC Connection object supports five distinct transaction levels, which

may be supported wholly or in part by the underlying RDBMS.

JDBC is currently limited in that it cannot manage transactions across multiple

connections. For transaction support across databases or object services, CORBA's

Transaction Service can provide the correct level of abstraction.

Additionally, there are several restrictions that must be enforced to ensure that the

OTS Transaction Service can manage transactions.

The complete list of restrictions is as follows:

• Only one application server can be involved in a transaction.

• Only one Resource may be involved in a transaction. The JDBC

DirectConnect driver transparently registers this. Resource—the application

may not register any other Resources for the transaction.

69

•

Applications must obtain a JDBC connection when required, and then call

close() on that connection when that particular unit of work is completed.

Since connections are pooled, calling close() on the connection is inexpensive,

and does not really result in closing the underlying database connection.

Since the JDBC connections are pooled, properties that are set for connections

in a particular transaction will remain in effect when the connections are

reused by other transactions.

70

APPENDIX A: IDL DEFINITION FOR COSTRANSACTION

#ifndef _COS_TRANSACTION_
#define _COS_TRANSACTION_

#pragma prefix "omg.org"

module CosTransactions {

enum Status {
StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction

};

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

};

exception TransactionReguired {};
exception TransactionRolledBack {};
exception InvalidTranscation {};
exception HeuristicRollback {};
exception HeuristicCommit {};
exception HeuristicMixed {};
exception HeuristicHazard {} ,-
exception WrongTransaction {};
exception SubtransactionsUnavailable {};
exception NotSubtransaction {} ;
exception Inactive {};
exception NotPrepared {};
exception NoTransaction {};
exception InvalidControl {};
exception Unavailable {};

interface Control;
interface Terminator;
interface Coordinator;
interface Resource;
interface RecoveryCoordinator;
interface SubtransactionAwareResource;
interface TransactionFactory;
interface TransactionObject;
interface Current;

71

interface Current {
void begin() raises(SubtransactionsUnavailable);
void commit(in boolean report_heuristics) raises

(NoTransaction, HeuristicMixed, HeuristicHazard);
void rollback() raises(NoTransaction) ;
Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);
Control get_control();
Control suspend();
void resume(in Control which) raises(InvalidControl);

};
interface TransactionFactory {

Control create(in unsigned long time_out);
};
interface Control {

Terminator get_terminator() raises (Unavailable);
Coordinator get_coordinator() raises (Unavailable);

};
interface Terminator {

void commit (in boolean report_heuristics)
raises(HeuristicMixed,HeuristicHazard);

void rollback();
};
interface Coordinator {

Status get_status();
Status get_parent_status();
Status get_top_level_status();
boolean is_same_transaction(in Coordinator tc) ;
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
bolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();
unsigned long hash_transaction();
unsigned long hash_top_level_tran();
Recovery-Coordinator register_resource(in Resource

r)raises(Inactive);
void register_subtran_aware(in SubtransactionAwareResource

r) raises(Inactive);
void rollback_only() raises (Inactive);
string get_transaction_name();
Control create_subtransaction() raises

(SubtransactionsUnavailable, Inactive);
};
interface Recovery-Coordinator {

Status replay_completion(in Resource r)
raises (NotPrepared);

};

72

interface Resource {
Vote prepare();
void rollback() raises(HeuristicCommit,

HeuristicMixed,HeuristicHazard);
void commit() raises (NotPrepared,

HeuristicRollback,HeuristicMixed, HeuristicHazard);
void commit_one_phase() raises(HeuristicRollback,

HeuristicMixed,HeuristicHazard);
void forget();

};
interface SubtransactionAwareResource : Resource {

void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

};
interface TransactionalObject{
};

}.

module CosTSInteroperation
{

struct otid_t
{

long formatID;
long bequal_length;
seguence<octet> tid;

};
struct Transldentity
{

CosTransactions::Coordinator coordinator;
CosTransactions::Terminator terminator;
otid_t otid;

};
struct PropagationContext
{

unsigned long timeout;
Transldentity current;
sequence<TransIdentity> parents;
any implementation_specific_data;

};
};
#endif

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

APPENDIX B: IDL DEFINITION FOR PROJECT

#include "CosTransactions.idl"

module Project{

exception UnavailableCourse
{

string course_name;
}j

struct course
{

string index_number;
string course_code;
string section;
string course_name;
string meeting;
string credits;
string student_ID;

};
typedef sequence<course>courseSeq;

interface Register : CosTransactions::TransactionalObject
{

courseSeg add_course(in string course_index_number, in
string Student_ID, in string password ,

in string studentName)
raises (UnavailableCourse);

courseSeq drop_course{in string course_index_number,
in string Student_ID, in string password,
in string studentName)
raises (UnavailableCourse);

};

75

THIS PAGE INTENTIONALLY LEFT BLANK

76

APPENDIX C: SERVER IMPLEMENTATION

//
// Filename
// Date
//Subject
// Compiler
//

Server.j ava
01 Jan 2000
Master Thesis
Sun JDK1.3

public class Server {

public static void main(String args[]) throws Exception {

if(args.length != 0) {
System.err.println("j ava -DJAVA_ORB_DIR=H:/JavaORB/bin/
Server ");
System.exit(1);

}//end of if

System.out.println("Starting the ORB...");

// Initialize the ORB
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);

org.omg.CosTransactions.Boot.init(orb);

// Initialize the BOA
org.omg.CORBA.BOA boa = org.omg.CORBA.BOA.ini t(orb,args);

// create and register the object
// Then declare the transactional
Registrationlmpl orblet = new Registrationlmpl(orb);

// Connect the instance to BOA
boa.connect(orblet);

// Export into a file the object reference
String reference = orb.object_to_string(orblet);
JavaORB.util.IORManager ior_manager = new
j avaORB.util.IORManager();
JavaORB.util.IORBag ior_bag = null;
iorjbag = ior_manager.extract(reference);

System.out.println("");
System.out.println("IOR dump result");
System.out.println("");
System, out. println ("HOP version : " + ior_bag. version, major +

"." + ior_bag.version.minor);
System.out.println("Host name : " + ior_bag.host);
System.out.printIn("Port number : " + ior_bag.port);
System.out.println("Object id : " + ior_bag.id);
System.out.println("Object key : " + new String(ior_bag.key)
System.out.println("");

77

A/then put it into a file
try
{ '

java.io.FileOutputStream file = new
java.io.FileOutputStream("Objectld");

java.io.PrintStream pfile=new java.io.PrintStream(file);
pfile.println(reference);

}//end of try-
catch (java.io.IOException ex)
{

System.out.println("Unable to export server reference");
}//end of catch
// Then wait for incoming requests
try
{

System.out.printIn("The server is ready...");
boa.impl_is_ready();

}//end of try
catch (org.omg.CORBA.SystemException e)
{

System.out.println("An exception has been intercepted.");
}//end of catch

}//end of main
}//end of server

78

APPENDIX D: CLIENT IMPLEMENTATION
//
// Filename
// Date
//Subject
// Compiler
//

Client.java
: 01 Jan 2000
Master Thesis
Sun JDK1.3

import java.applet.Applet;
import j ava.awt.*;
import j ava.uti1.*;
import j ava. awt. event. * ;
import j ava.lang.*;
import j avax.swing.*;
import javax.swing.table.*;
import j avax.swing.event.*;
import j avax.swing.border.*;
import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
import org.omg.Project.*;
import org.omg.CosTransactions.*;

public class Client implements LayoutManager
{

static String[] ConnectOptionNames = { "Connect" };
static String ConnectTitle = "Connection Information";
Dimension origin = new Dimension(0, 0);

addCourseButton;
dropCourseButton;
showRegisteredCoursesButton;
connectionPanel;
frame;
userNameLabel;

JButton
JButton
JButton
JPanel
JFrame
JLabel
JTextField
JLabel
JTextField
JComponent
JPanel

userNameField;
passwordLabel;
passwordField;
queryAggregate ;
mainPanel;

JScrollPane tableAggregate;
JLabel courselndexNumberLabell;
JLabel courseIndexNumberLabel2 ;
JLabel addCourseStudentNameLabel ;
DefaultTableModel dataModel;
JTextField addCourseTextField;
JTextField dropCourseTextField;
JTextField studentNameTextField;

//Now get the Transactional server reference
static Register orblet ;
static String student_ID = null;
static String password = null;
final String[] names = {"Index Number", "Course Code", "Section",

"Course Name", "Meeting", "Credits","Student ID"};

79

static course[] data = new courseflOO];
static org.omg.CORBA.Object obj ;
static org.omg.CORBA.ORB orb;
org.omg.CosTransactions.Current current = null;

public Client(){
mainPanel = new JPanel()
for (int i=0

data[i
data[i
data[i
data[i
data[i
data[i
data[i
data[i

;i<data.length-l;i++) {
I= new course();
.index_number = "";
.course_code = "";
.section = "";
.course_name = "";
.meeting = "";
.credits = "";
.student_ID = "";

}// end of for
// Create the panel for the connection information
createConnectionDialog();
// Create the buttons.
showRegisteredCoursesButton = new JButton("Show Schedule")
addCourseButton = new JButton("Add Course");
dropCourseButton = new JButton("Drop Course");
//Create the labels.
courselndexNumberLabell = new JLabel("Course Index

Number");
courseIndexNumberLabel2 = new JLabel("Course Index

Number");
addCourseStudentNameLabel = new JLabel("Student Name");
addCourseTextField = new JTextField(6);
dropCourseTextField = new JTextField(6);
studentNameTextField = new JTextField(16);
showRegisteredCoursesButton.addActionListener(new

QueryChangeListener())
addCourseButton.addActionListener(new

QueryChangeListener())
dropCourseButton.addActionListener(new

QueryChangeListener())
// Create the table.
tableAggregate = createTable () ,-
tableAggregate.setBorder(new

BevelBorder(BevelBorder.LOWERED)) ;
// Add all the components to the main panel.
mainPanel.add(addCourseButton);
mainPanel.add(dropCourseButton);
mainPanel.add(showRegisteredCoursesButton);
mainPanel.add(tableAggregate);
mainPanel.add(addCourseTextField);
mainPanel.add(dropCourseTextField);
mainPanel.add(studentNameTextField);
mainPanel.add(courselndexNumberLabell);
mainPanel.add(courseIndexNumberLabel2);
mainPanel.add(addCourseStudentNameLabel);
mainPanel.setLayout(this);
// Create a Frame and put the main panel in it.

80

frame = new JFrame("Register a Course");

frame.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e)
{

System.exit(0);}
}

);
frame.setBackground(Color.lightGray);
frame.getContentPane().add(mainPanel);
frame.pack();
frame.setVisible(false);
frame.setBounds(200, 200, 640, 480);
activateConnectionDialogO;

}//end of client class

/**

* Brigs up a JDialog using JOptionPane containing the
* connectionPanel. If the user clicks on the
* 'Connect' button the connection is reset.
*/

void activateConnectionDialogO{
if(JOptionPane.showOptionDialog(tableAggregate,

connectionPanel,ConnectTitle,
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE,null,
ConnectOptionNames, ConnectOptionNames[0]) == 0)

{
connect();
frame.setVisible(true);

}
else if (! frame. isVisibleO)

System.exit(0);
}

/**

* Creates the connectionPanel, which will contain all the
* fields for the connection information.
*/

public void createConnectionDialog() {
// Create the labels and text fields.
userNameLabel = new JLabel("User name: ", JLabe1.RIGHT);
userNameField = new JTextField("");
passwordLabel = new JLabel("Password: ", JLabe1.RIGHT);
passwordField = new JPasswordField("");
connectionPanel = new JPanel(false);
connectionPanel.setLayout(new BoxLayout(connectionPanel,

BoxLayout.X_AXIS));
JPanel namePanel = new JPanel(false);
namePanel.setLayout(new GridLayout(0, 1));
namePanel.add(userNameLabel);
namePanel.add(passwordLabel);

JPanel fieldPanel = new JPanel(false);
81

fieldPanel.setLayout(new GridLayout(0, 1));
fieldPanel.add(userNameField);
fieldPanel.add(passwordField);

connectionPanel.add(namePanel);
connectionPanel.add(fieldPanel);

}//end of createConnectionDialog method

class ShowConnectionlnfoListener implements ActionListener {
public void actionPerformed(ActionEvent e) {

activateConnectionDialog();
}//end of actionPerformed method

}//end of ShowConnectionlnfoListener method

class QueryChangeListener implements ActionListener {
public void actionPerformed(ActionEvent e)

{
String c = e.getActionCommand();
if (c.equals("Add Course")) {

addCourse();
}//end of if
else if (c.equals("Drop Course")){

dropCourse();
}//end of else if
else if (c.equals("Show Schedule")) {

displaySchedule();
}//end of else if

}//end of actionPerformed method
}//end of QueryChangeListener class

public void connect(){
student_ID = userNameField.getText();
password = passwordField.getText();

}//end of connect method

public void addCourse(){
try {

// get current
org.omg.CosTransactions.Current current =

getCurrent();
// Begin a transaction
System.out.println("Begin a transaction.");
current.begin();
System.out.println(addCourseTextField.getText());
data = orblet.add_course

(addCourseTextField.getText(),student_ID,
password,

studentNameTextField.getText());
System.out.println("!!!!" + data[0].student_ID);
System.out.println("Transaction Name" +
current.get_transaction_name());
System.out.println(" Commit the transaction ");
current.commit(true);
System.out.println("The transaction has

been commited");
}//end of try

82

catch (java lang.Exception e){
System err println("No transaction - - ro Llback \n ' +

e);

try {
System out println('Current Transaction is ro. .line J

back");
current.rollback() ;

}//end of try
catch(org.omg.CosTransactions.NoTransaction nt) {

System.err.println("\nNo transaction " + nt);
System.exit(1) ;

}//end of second catch
}//end of first catch

}//end of add course method
public void dropCourseO {

try {
// get current

org.omg.CosTransactions.Current current =
getCurrent();

System.out.println("Begin a transaction.");
current.begin();
System, out.println(dropCourseTextField.getText());
data =

orblet.drop_course
(dropCourseTextField.getText(),student_ID,
password, studentNameTextField.getText());

System.out.println("!!!!!!" + data[0].index_number);
System.out.println("In dropCourse");
System.out.println("Call Commit the transaction");
System.out.println("Transaction Name" +
current.get_transaction_name());
// Commit the transaction
current.commit(true) ;
System.out.println("The transaction has been

commited");
}//end of try
catch (java.lang.Exception e){

System.err.println("No transaction-rollback:\n "+e);
try {

System.out.println("Current Transaction is
rolling back");

current.rollback();
}//end of try

catch(org.omg.CosTransactions.NoTransaction nt) {
System.err.println("\nNo transaction " + nt);
System.exit(1);

>//end of second catch
}//end of first catch

}//end of dropCourse method

private org.omg.CosTransactions.Current getCurrent() {
System.err.println("Session: Resolve TransactionCurrent to

get access to Current object.");
try {

83

org.omg.CORBA.Object obj =
orb.resolve_initial_references("TransactionCurrent");
org.omg.CosTransactions.Current current =
org.omg.CosTransactions.CurrentHelper.narrow(obj);

if(current == null) {
System.err.printlnf"current is not of expected

type");
}//end of if
return current;

}//end of try
catch (Java.lang.Exception e)
{

System.err.printIn(e);
return null;

}//end of catch block
}//end of getCurrentO

public void displaySchedule() {
System.out.println("Display Schedule");
dataModel.fireTableDataChanged();
//createTable();

}//end of displaySchedule method
public JScrollPane createTable() {

System.out.println("createTable method is called");
// Create a model of the data.
// TableModel dataModel = new AbstractTableModel() {
dataModel = new DefaultTableModel() {

// These methods always need to be implemented,
public int getColumnCount() { return names.length; }
public int getRowCount() { return data.length;}
public Java.lang.Object getValueAt(int row, int col)
{

if (data[0].index_number.equals(""))
return "";

if(col==0)
return data[row].index_number;

else if(col==l)
return data[row].course_code;

else if(col==2)
return data[row].section;

else if(col==3)
return data[row].course_name;

else if(col==4)
return data[row].meeting;

else if(col==5)
return data[row].credits;

else if(col==6)
return data[row].student_ID;

return "";
}//end of getValueAt method
// The default implementations of these methods in
// AbstractTableModel would work, but we can refine
//them.
public String getColumnName(int column)

84

{
return names [column] ;

}

public boolean isCellEditable(int row, int col)
{

return (col==4);
}
public void setValueAt(Java.lang.Object aValue,

int row, int col)
{

if(col==l)
data[row].index_number = (String)aValue;

else if(col==2)
data[row].course_code = (String)aValue;

else if(col==3)
data[row].section = (String)aValue;

else if(col==4)
data[row].course_name = (String)aValue;

else if(col==5)
data[row].meeting = (String)aValue;

else if(col==6)
data[row].credits = (String)aValue;

else if(col==7)
data[row].student_ID = (String)aValue;

}//end of setValueAt method
}; //end of DefaultTableModel definition

JTable tableView = new JTable(dataModel);
JScrollPane scrollpane =

JTable.createScrollPaneForTable(tableView);
return scrollpane;

}//end of JScrollPane createTable method

public static void main(String args[]) {
JavaORB.Trace.setTraceFile("bug.log");
JavaORB.Trace.setTraceLevel(4);

try {

// 1.
// Initialize the ORB
orb = org.omg.CORBA.ORB.init(args,null);
org.omg.CosTransactions.Boot.init(orb);
// 2.
// Get the Calculator reference from a file
orblet = null;
obj = null;
try{

java.io.FilelnputStream file = new
java.io.FileInputStream("Objectld");
java.io.DatalnputStream myInput = new
java.io.DatalnputStream(file);
String stringTarget = myInput.readLine() ;

85

obj = orb.string_to_object(stringTarget);

JavaORB.util.IORManager ior_manager =
new JavaORB.util.IORManagerO ;

JavaORB.util.IORBag ior_bag = null;
ior_bag = ior_manager.extract(obj);
System.out.println("") ;

System.out.println("IOR dump
result");

System.out.println("") ;
System.out .println ("HOP version :
+ ior_bag.version.major + "." +

ior_bag.version.minor);
System.out.println("Host name : " +

ior_bag.host);
System.out.println("Port number : "

+ ior_bag.port);
System.out.println("Object id : " +

ior_bag.id);
System.out.println("Object key : "

+ new String(ior_bag.key));
System.out.println("");
JavaORB.Trace.setTraceFile

("bug.log");
JavaORB.Trace.setTraceLevel(4);

}//end of try
catch (java.io.IOException ex)
{

System.out.println("File error");
System.exit(0);

}//end of catch

// 3.
// Narrow the object reference
orblet = RegisterHelper.narrow(obj);
// Use the client object
new Client();

}//end of try
catch (Exception e)
{

System.out.println("Cannot connect to ORB for
Register");

return;
}//end of catch

}//end of main

public Dimension preferredLayoutSize(Java.awt.Container c){
return origin;

}
public Dimension minimumLayoutSize(Java.awt.Container c){

return origin;
}
public void addLayoutComponent(String s, Component c) {}
public void removeLayoutComponent(Component c) {}
public void layoutContainer(Java.awt.Container c)
{

86

Rectangle b = c.getBounds();
int topHeight = 90;
int inset = 4;
dropCourseButton.setBounds(b.width-2*inset-130, inset, 120,

25);
addCourseButton.setBounds(b.width-2*inset-130, 32, 120,

25);
showRegisteredCoursesButton.setBounds(b.width-2*inset-130,

60,120,25);
dropCourseTextField.setBounds(b.width-225, inset, 60, 25);
addCourseTextField.setBounds(b.width-225, 32, 60, 25);
studentNameTextField.setBounds(b.width-520, 32, 125, 25);
courselndexNumberLabell.setBounds(b.width-375, inset, 140,

25);
courseIndexNumberLabel2.setBounds(b.width-375, 32, 140,

25) ;
addCourseStudentNameLabel.setBounds(b.width-625, 32, 100,

25);
tableAggregate.setBounds(new Rectangle(inset,

inset + topHeight,b.width-2*inset,
b.height-2*inset - topHeight));

}//end of layoutContainer method
}//end of client class.

87

THIS PAGE INTENTIONALLY LEFT BLANK

88

APPENDIX E: REGISTRATION CLASS IMPLEMENTATION

//-

//Filename

//Date

//Subject

//Compiler

Registrationlmpl.java

01 Jan 2000

Master Thesis

Sun JDK1.3

//-

import j ava.sql.*;

import j ava.ut i1.*;

import j ava.net.*;

import org.omg.CORBA.*;

import org.omg.Proj ect.*;

import org.omg.CosTransactions.*;

import transaction.util.*;

public class Registrationlmpl extends _RegisterImplBase

{

Connection connection;

Statement statement ;

ResultSet resultSet ;

String[] columnNames = {};

Class[] columnTpyes = {} ;

Vector rows = new Vector();

String url = "jdbcrodbc:Sybase" ;

String driverName = "sun.jdbc.odbc.JdbcOdbcDriver";

String databaseUser="yhazir";

String databasePassword="yh7093'' ;

ResultSetMetaData metaData;

String[][] classes;

private Lock lock;

/ **

* Reference to the ORB

*/

org.omg.CORBA.ORB _orb ;

89

I **

* Reference to the resource

*/

myResource r = null;

org.omg.CosTransactions.Current current = null;

org.omg.CosTransactions.Coordinator coordinator = null;

org.omg.CosTransactions.Recovery-Coordinator recCoordinator =

null;

public Registrationlmpl(org.omg.CORBA.ORB orb)

{

_orb = orb;

lock = new Lock();

if(_orb == null) {

System.err.println("orb is not of expected type");

}//end of if

r = new myResource();

orb.connect(r);

}//end of Registrationlmpl constructor.
/**

* add_course Operation
*

* This operation can be used in a transactional mode

*/

public synchronized course[] add_course(String

Index_Number, String Student_ID, String

password, String student_Name)

throws UnavailableCourse

{

boolean commit = false ;

course[] mycourseSeq = new course[100];

try {

markForTransactionBeginO ;

Class.forName(driverName);

System.out.println("Opening db connection in

add_course");

90

connection = DriverManager.getConnection(url,

Student_ID, password);

statement = connection.createstatement();

for (int i=0;i< 100;i++)

mycourseSeq[i] = new course("", "", "",
1111 H ii'

if (connection == null || statement == null)

{

System.err.println("There is no database to

execute the query.");

markForRollbackO ;

return null;

}//end of if

Sys tern.err.printIn(Index_Number);

System.err.println(s tudent_Name);

String str = new String("INSERT INTO

REGISTERED_COURSES

(Index_Number,Course_Code,Section,

Course_Name,Meeting,Credits)"+

"\nSELECT Index_Number,Course_Code,Section,

Course_Name,Meeting,Credits " + "\nFROM courses

WHERE Index_Number =" + "\'" + Index_Number +
n\'") ;

System.out.println(str);

int returnVal = statement.executeUpdate(str);

str = new String("\nupdate

REGISTERED_COURSES set Student_ID ="

+ "V" + student_Name + "\'n +"\nwhere

Index_Number =" + " \ '" +

Index_Number + " \'") ;

System.out.println(str);

returnVal = statement.executeUpdate(str);

if(returnVal == 0){

throw new UnavailableCourse("ERROR

IN SQL Statement or Primary-

Key" , Index_Number);

}//end of if

91

resultSet = statement.executeQuery

("SELECT Index_Number,Course_Code,

Section, Course_Name, Meeting, Credits,

Student_ID FROM REGISTERED_COURSES ");

metaData = resultSet.getMetaData();

// Get all rows,

rows = new Vector();

int rowcount=0;

while (resultSet.next()){

Vector newRow = new Vector();

for (int i = l;i <= metaData.getColumnCount();

i++)

{

if (i==l){

mycourseSeq[rowcount].index_number

= resultSet.getString(i) ;

continue;

}//end of if

else if(i==2){

mycourseSeq[rowcount].course_code =

resultSet.getString(i);

continue;

}//end of else if

else if(i==3){

mycourseSeq[rowcount].section =

resultSet.getString(i) ;

continue;

}//end of else if

else if(i==4){

mycourseSeq[rowcount].course_name =

resultSet.getString(i);

continue;

}//end of else if

else if(i==5){

mycourseSeq[rowcount].meeting =

resultSet.getString(i);

continue;

92

}//end of else if

else if(i==6){

mycourseSeqfrowcount].credits =

resultSet.getString(i);

continue;

}//end of else if

else if(i==7){

mycourseSeg[rowcount].student_ID =

resultSet.getString(i);

continue;

}//end of else if

}//end of for

rowcount++;

}//end of while

resultSet.close();

statement.close();

commit = true;

}//end of try-

catch (UnavailableCourse uac)

{

System.out.println("\n ERROR IN SQL Statement or

PK") ;

System.err.println("\n This course is not available

in database.") ;

System.err.println("\n Unavailable Course Name :" +

uac.course_name);

markForRollbackO ;

}//end of catch block

catch (SQLException sgl)

{

System.err.printlnCCannot connect to this

database.");

System.err.println(sql);

93

markForRollback();

}//end of catch block

catch (ClassNotFoundException ex) {

System.err.println("Cannot find the database driver

classes.");

System.err.printIn(ex);

markForRollback();

} //end of catch block

finally {

// Commit or rollback the transaction.

if (commit) {

System.out.println("*** Committing transaction

* * * * n \ .

markForCommit();

}//end of if

else

{

System.out.println("*** Rolling back

transaction ***");

markForRollback();

} //end of else if

}//end of finally block

System.out.println("#####################");

for(int ix = 0; ix < 10; ix++) {

System.out.println("Student ID=" +

mycourseSeq[ix].student_ID);

}

return new courseSeqHolder(mycourseSeq).value;

//return mycourseSeq;

}//end of add_course method

public synchronized course[] drop_course(String

course_index_number. String Student_ID,

String password, String student_Name)

throws UnavailableCourse {

boolean commit = false ;

course[] mycourseSeq = new course[100];

try {

94

markForTransactionBeginO ;

Class.forName(driverName);

System.out.println("Opening db connection in

drop_course");

connection = DriverManager.getConnection(url,

Student_ID, password);

statement = connection.createStatement();

for (int i=0;i< 100;i++)

mycourseSeq[i] = new course("", "", "", "", "",
1111 n n \ .

if (connection == null || statement == null) {

System.err.println("There is no database to

execute the query.");

return null;

}//end of if

int returnVal = statement.executeUpdate("DELETE FROM

REGISTERED_COURSES

WHERE INDEX_NUMBER = "

+ " \ ' " +

course_index_number
. it \ , 11 i n

AND Student_ID =" +

" \'" +

student_Name + "\' ;");

if(returnVal == 0){

throw new UnavailableCourse("ERROR IN SQL

Statement or Primary Key",

course_index_number);

}//end of if

resultSet = statement.executeQuery("SELECT

Index_Number, Course_Code, Section,

Course_Name, Meeting,

Credits,Student_ID

FROM REGISTERED_COURSES ");

metaData = resultSet.getMetaDataO;

// Get all rows.

95

rows = new Vector();

int rowcount=0;

while (resultSet.next()){

Vector newRow = new Vector();

for (int i = 1; i <= metaData.getColumnCount() ;

i++)

{

if(i==l){

mycourseSeq[rowcount].index_number =

resultSet.getString(i);

continue;

}//end of if

else if(i==2){

mycourseSeq[rowcount].course_code =

resultSet.getString(i) ;

continue;

}//end of else if block

else if(i==3){

mycourseSeq[rowcount].section =

resultSet.getString(i);

continue;

}//end of else if block

else if(i==4){

mycourseSeg[rowcount].course_name =

resultSet.getString(i);

continue;

}//end of else if block

else if(i==5){

mycourseSeq[rowcount].meeting =

resultSet.getString(i);

continue;

}//end of else if block

else if(i==6){

mycourseSeq[rowcount].credits =

resultSet.getString(i);

continue;

96

}//end of else if block

else if(i==7){

mycourseSeq[rowcount].student_ID =

resultSet.getString(i);

continue;

}//end of else if block

System.out.println(classes[rowcount][i]);

}//end of for

rowcount++;

}//end of while

commit = true;

}//end of try

catch (UnavailableCourse uac){

System.out.printIn("\n ERROR IN SQL Statement or PK");

System.err.println("\n This course is not available in

database.") ;

System.err.println("\n Unavailable Course Name :" +

uac.course_name);

markForRollback();

}//end of catch block

catch (SQLException sql){

System.err.println("Cannot connect to this database.");

System, err.println(sql);

markForRollback();

}//end of catch block

catch (ClassNotFoundException ex) {

System.err.println("Cannot find the database driver

classes.");

System.err.println(ex);

markForRollback();

}//end of catch block

finally {

// Commit or rollback the transaction,

if (commit) {

System.out.println("*** Committing transaction ***»);

markForCommit();

}//end of if

97

else{

System.out.printin("*** Rolling back transaction

***");

markForRollback() ;

}//end of else if block

}//end of finally block

return new courseSeqHolder(mycourseSeq).value;

} //end of drop_course method

public void markForTransactionBegin(){

// This operation register a resource and mark transaction

to be rollbacked only

try {

//lock add_course

lock. lockO ;

// get current

current = getCurrent();

System.out.println("start transaction");

current.begin() ;

// get control and coordinator

String transName = current.get_transaction_name();

System.out.println("Registrationlmp:name of the

transaction : " + transName);

org.omg.CosTransactions.Status currentStatus =

current.get_status();

System.out.println("Registrationlmpl: status of the

transaction: " + currentStatus.value());

System.err.println("Registrationlmpl: get control");

Control control = current.get_control();

System.err.printlnf"Registrationlmpl: get

coordinator");

coordinator = control.get_coordinator();

// register resource

98

System.out.printin("Registrationlmpl: register

resource with OTS");

recCoordinator = coordinator.register_resource(r) ;

}// end of try block

catch (Java.lang.Exception e)

{

System.err.println("markForTransactionBegin catch

block\n" + e);

}

}//end of markForTransactionBegin method

public void markForRollback(){

try {

//unlock add_course

lock.unlockO ;

coordinator.rollback_only();

}//end of try block

catch (Java.lang.Exception e)

{

System.err.printIn(e);

throw new org.omg.CORBA.BAD_PARAM();

}//end of catch block

}//end of markForRollbackO

public void markForCommit() {

try {

//unlock add_course

lock.unlockO ;

org.omg.CosTransactions.Status currentStatus2 =

current.get_status();

System.out.println("Registrationlmpl: status of the

transaction: " + currentStatus2.value());

current.commit(true);

System.out.println("Transaction has been Committed");

99

org.omg.CosTransactions.Status currentStatus3 =

current.get_status();

System.out.println("Registrationlmpl: status of the

transaction: " + currentStatus3.value());

} //end of try block

catch (Java.lang.Exception e) {

System.err.println(e);

markForRollback();

}//end of catch block

}//end of markForCommit()

private org.omg.CosTransactions.Current getCurrentO {

System.err.println("Session: resolve transaction current");

try {

org.omg.CORBA.Object obj =

_orb.resolve_initial_references

("TransactionCurrent");

current =

org.omg.CosTransactions.CurrentHelper.narrow(obj);

if(current == null) {

System.err.println("current is not of expected

type");

}//end of if

return current;

}//end of try-

catch (Java.lang.Exception e)

{

System.err.printIn(e);

return null;

}//end of catch block

}//end of getCurrentO

} //end of Registrationlmpl class

100

APPENDIX F: LOCK CLASS IMPLEMENTATION
// _
// Filename : Lock.java
// Date : 01 Jan 2000
//Subject : Master Thesis
// Compiler : Sun JDK1.3
//

package transaction.util;

public class Lock {
private boolean locked;

public Lock() {
locked = false;

>//end of Lock constructor

synchronized public void lock() {
while(locked) {

try {
this.wait () ;

}//end of try
catch(InterruptedException e) {
}//end of catch

}//end of while
locked = true;

}//end of lock method

synchronized public void unlock()
locked = false;
this.notifyAHO ;

}//end of unlock method
} / / end of Lock class.

101

THIS PAGE INTENTIONALLY LEFT BLANK

102

APPENDIX G: APPLICATION PROGRAM GUI SCREEN SHOTS

1. Connection To a Database

* Connection Information

User name:

Password:

Connect

2. Adding a new course from the Course Table to Registered Course Table

^Register a Course l-Jri'M

Course Index Number

Course Index Number

Drop Course

Student Name B.Clinton 2000 Add Course

Show Sched.„

»index Number Course Code ««Section Course Isiärne SSMeeting Credits StudentID
*^l 4000 CS 2 Introduction J... M3T4 4+1 C.Eagle

5000 CS 2 Advanced Java M3T3W4T5F5 2+1 T.Wu
7000 CS 1 Advanced C++ M1T1W2T3 2+1 Y.Hazir
3000 CS 1 Operating SyL. M4T3W5 5+1 M.Daglar
1000 CS 1 Database M2W3F3 4+1 E.Hazir

yr

2000 CS 2 Architecture M4T4W4 4+1 B.Clinton

&',

 ! i

103

3. Dropping a course from the Registered Course Table

EU Register a Course HB3I2

Student Name B.Clinton

Course Index Number 2000

Course Index Number

Drop Course

Add Course

ShowSchetL.

Index Number Course Code Section Course Name Meeting Credits Student ID
4000 CS 2 Introduction J... M3T4 4+1 C.Eagle A

5000 CS 2 Advanced Java M3T3W4T5F5 2+1 T.Wu
7000 CS 1 Advanced C++ M1T1W2T3 2+1 Y.Hazir

II 3000 CS 1 Operating SyL. M4T3W5 5+1 M.Daglar
1000 CS 1 Database M2W3F3 4+1 E.Hazir

f

*W

104

APPENDIX H: CLIENT \ SERVER DOS OUTPUT SCREEN SHOTS

1. Begin the JAVAORB Object Transaction Service(OTS)

2. Start the Server Program

Command Prompt - HAidkl.2.2\bin\iava -DJAVA ORB DIR=H:\JavaORB\bin Client -TnT

-ßJflUfl_ORB_l)IR=H:\JauaORB\bin Client H:\JauaORB\examples\Project>H:\jdkl.2.2\Mn\jaua -ßJflUfl_ORB_DIR=H:\J

I OR dump result

HOP uersion : 1.2
Host name : boreas
Port number : 1157
Object id : IBL:Project/Register:!.0
Object key : IDL:Pro ject/Register:l .0/1

createlable method is called
Session: Resolue TransactionCurrent to get access to Current object.
Begin a transaction.
1008
•♦♦♦C.Eagle
Transaction NameTransaction nunero : 1
Call Commit the transaction
Commit the transaction

The transaction has been commited

105

3. Start Client, make connection to Database and Use Add and Drop Functions

SCommand Ptomp» - H:\jdk1.2.2\bin\java -PJAVA_ORB_PIR=H:\JavaORB\bin Client BSD

rl:\JauaORB\examples\Project>H:\jdkl.2.2\bin\jaua -DJAUfi_ORB_DIR=H :\JauaORB\bin Client

I OR dump result

HOP uersion : 1.2
Host name : boreas
Port number : 1157
Object id : IDL:Project/Rcgister:l.0
Object key : IDL:Project/Pegister:1.0/1

createTable method is called
Session: Resolue TransactionCurrent to get access to Current object.
Begin a transaction.
1008
♦?!?C-Eagle
Transaction NaneTransaction nunero : 1
Call Commit the transaction
Commit the transaction

The transaction lias been comnited
Session: Resolue TransactionCurrent to get access to Current object.
Begin a transaction.
2000
••••C.Eagle
Transaction NameTransaction nunero : 3
Call Commit the transaction
Commit the transaction

The transaction has been comnited

•'•5 Command Piompt - HAidk1.2.2\bin\java -DJAVA ORB DIR-H:UavaORB\bm\ Server

H:\JauaORB\exar>ples\Project>H:\jdkl.2.2sbin\jaua -DJnUl1_0RB_DI R =H :\JauaORB\bin\ So
Starting the ORB

I OR dump result

I I OP uersion : 1.2
Host narte : boreas
Port lumber : 11S7
Object id : IDL:Project/Register:1.0
Object key : IDL:Project/Register:1.0/1

The server is ready...
Session: resolue transaction current
start transaction
RegistrationInp:nane of tire transaction : Transaction nunero : 2
Registrationlmpl: status of the transaction: 0
Registrationlnpl: get control
Registrationlmpl: get coordinator
Registrationlnpl: register resource with OTS
Opening db connection in add_course
1000
E.Hazir
INSERT INTO REGISIERED_COURSES < I ndex_Nunber.Course_Corfe .Sect ion.Cour=e_Nane,Meet
SELECT Index_Nunber,Course„Code, Sect ion,Course„Name.Meet ing,Credits
FROM courses UHERE Index_.Nunber ='1000'

e,Meet ing,Credits

update KEGISTERED_COURSES set Studcnt_ID = 'E
where Index_Nunber ='1080'
-»-*< Connitting transaction *-»**
RegistrationInpl: status of the transaction: Q
Resource : PREPARE
Resource : COMMIT
Resource : FORGET
Transaction has been Connitted
Registrationlnpl: status of the transact ion: 6
itimtittttttttttttttittttttttttttttttttt
Student ID=C.Eagle
Student ID«T.Uu
Student ID^V.Hazir
Student ID=M.Daglar
Student ID=E.Hazir
Student ID=
Student ID=
Student ID=
Student ID"
Student ID =

106

APPENDIX I: DATABASE TABLES SCREEN SHOTS

*\ Microsoft Access

0e Bt 2m IrsrtFsjiwrgecords Joels Window Ö*

tiHüTäa"?;* »a.*Hfc'»jtriil%i Yjn »wijgra^isi-
ItpSjbase: Database

Cobles | SQUBK I grams | B Reports | 2 Macros j <$Moofcs

Courses

ReoBtaecKourses »&Ü1
New

| g Coutses:: Tabfe :.. ■■--.- ■.-.,"■■ -BBS
Indexjfarnner | Cburse_Code 1 Secfofi | Course Name j Meeting | Credits

i 1000 CS 1 ! Database ;M2W3F3 |4+1
2000 CS 2 Architecture SM4T4W4 14+1
3000 CS 1 I Operating Sytem !M4T3W5 15+1
4000 CS 2 I Introduction Java 'M3T4 14+1
5000 CS 2 lAdvancedJava ;M3T3W4TSF5 12+1

i 6000 :CS !2 I Introduction C++ sM2T4F5 14+1
7000 ICS 1 Advanced C++ iM1T1W2T3 12+1
8000 :CS 1 Database Seminer IM0T4F0 2+1

§
9000 ;CS 2 Sotware Engineering M0T4TH0 13+1

Registe(ed_Courses: Table HEB
tjpiijMimbej| Course Code | Section |Coursa_Nsrne| Meeting | Credits | StudenilHl

II asm cs i2 ^Introduction JavjM3T4 ;4+1 C. Eagle
1000 CS 1 ! Database IM2W3F3 4+1 EHazir

%

3000 CS 1 Operating SyterlM4T3W5 5+1 M.Daglar
5000 CS 2 : Advanced Java jM3T3W4T5F5 2+1 T.Wu
7000 CS 1 Advanced C++:M1T1W2T3 2+1 Y.Hazir

,;

VOUSKCL •MW «"

107

THIS PAGE INTENTIONALLY LEFT BLANK

108

LIST OF REFERENCES

[1] "Object Management Architecture Guide ", Object Management Group, Inc., OMG
TC Document 92.11.1,Revision 2.0, Sepember 1,1992.

[2] R. Orfali and D. Harkey, "Client/Server Programming JAVA and CORBA (Second
Edition).

[3] "Common Object Request Broker Architecture and Specification", Object
Management Group,Inc.,Reverision 2.0,July 1995.

[4] "Components Everywhere." T. R. Halfhill and S. Salamore, BYTE, vol. 21, No. 1,
pp.97-104, January 1996.

[5] "Intergration, Not Perspiration", David S. Linthicum, BYTE, vol. 21, No. 1, pp.83-
96, January 1996.

[5] "Common Object Services Specification",Object Management Group,Inc,

[6] "Distributed Systems Concepts and Design",George Coulouris, Jean Dollimore,
Tim Kindberg, Addison-Wesley Publishing Company 1994.

[7] "Transaction Processing Concepts and Techniques",Jim Gray,Andeas Reuter, 1993
Morgan Kaufmann Publishers, Inc.,

[8] "Object and Transactions: together at Last",E. Cobb, OBJECT Magazine,pp.59-63,
January 1995.

[9] "Client/Server with Distributed Objects",R. Orfali and D. Harkey, BYTE
Magazine, pp.151-162, April 1995.

[10

[11

[12

[13

[14:

[15

[16

[17

"Building a Transaction Processing System on Unix Systems", S. Andrade, M.T.
Carges, UniForum Conference Proceedings, February 1989.

"Enterprise Transaction Processing", A. Dwyer, Uniforum Conference Proceedings,
January 1991.

"Distributed Computing Monitor", A. D. Wolfe, vol. 7, No. 11, November 1992.

"Principles of Transaction-Oriented Database Recovery", T. Harder and A. Reuters,
Computing Surveys, vol. 15, 4,1983.

"Programming guide: Orbix 2 distributed object technology",IONA Technologies
Ltd. Release 2.0, November 1995.

"Reference Guide: Orbix 2 distributed object technology", IONA Technologies Ltd.
Release 2.0, November 1995.

"IonaSphere Issue 11", IONA technologies Ltd., May 1995.

"NEO Programming Guide", Beta Version, SunSoft, Inc., May 1995.

109

[18] "Digital's ObjetBroker-advanced Integration of Distributed Resources", Aberdeen
Group Profile, November 1995.

[19] "A Dynamic and Integrated Concurrency Control for Distributed Databases", F.
Pons and J. F. Vilarem, IEEE journal on Selected Areas in Communications, vol. 7,
No. 3, pp. 364-373, April 1989.

[20] "Subcontract: A Flexible Base for Distributed Programming", Hamilton, M. L.
Powell and J. G. Mitchell, Operating System Review, pp. 69-79, December 1993.

[21] "Transactions: Who needs Them?", Iain Houston, "http://204.146.47.71/objects/
owsf.html", IBM Corporation, 1995.

[22] "TPBroker : Next-Generation Object-Oriented Transaction Processing", Hitachi,
"http://www.hitachi.co.jp/Prod/comp/softl/open-e/tpbroker/tp-head.htm"

[23] "NEO Frequently Asked Questions", SunSoft Co. "http://www.sun.com/sunsoft/
neo/external/qna.html"

[24] "An Object Transaction Service Based on CORBA Architecture", Yue-Shan
Chang, Yu-Ming Kao, Shyan-Ming Yuan, and Deron Liang, Proc. of 1996
IFIP/IEEE Int'l Conf. on Distributed Platforms, (Dresden, Germany), Feb. 1996,

110

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

8725 John J. Kingman Road, Ste 0944

Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2

Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

3. Deniz Kuvvetleri Komutanligi 1

Personel Daire Baskanligi

Bakanliklar

Ankara, TURKEY

4. Deniz Kuvvetleri Komutanligi 1

Kutuphanesi

Bakanliklar

Ankara, TURKEY

5. Deniz Harp Okulu 2

Kutuphanesi

Tuzla

Istanbul, TURKEY

6. Chairman, Code CS 1

Naval Postgraduate School

Monterey, CA 93943-5101

111

7. Prof. C. Thomas Wu ,CS/Wu 1

Naval Postgraduate School

Monterey, CA 93943-5100

8. LCDR Chris EAGLE ,CS/Ce 1

Naval Postgraduate School

Monterey, CA 93943-5100

9. Yazilim Gelistirme Grup Baskanligi 1

Deniz Harp Okulu Komutanligi

Tuzla

Istanbul, TURKEY

10. LTJG. Yildiray HAZIR 2

Yuksek Sokak - Onurkent Sitesi

D2 Blök D3

81570 -Kucukyali

Istanbul, TURKEY

112

